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Abstract

One of mankind’s prevalent interests is to understand threiptes of nature, above all
the enormous abilities of learning, adaptation and the wpetrum of design principles
of musculo-skeletal systems. Apparently, the solutiomoame found in just one com-
ponent, but is distributed over the whole system and arrees their dynamic interplay.

In many cases, humans and animals gain higher behaviourerbigicing well known
lower level components instead of learning from scratchdiahally, we can find evi-
dence that even some animals entire locomotion reper®idesigned according to this
very principle, namely as sequential or linear combinatiblow level motor primitives.
Recent advances also take for granted that all movemenistareled as cyclic motion.
Needless to say that the use of oscillations makes lineabit@tion straightforward.
The interesting issue considering artificial agents is hmgenerate a good basis of motor
primitives. Moreover, we hope that this approach will offiera little more insight into an-
imal and human behaviour. In this context, we present theifirg series of experiments
that serve the development of a quality criterion for thegieand analysis of meaningful
motor primitives. The first step towards such guidelineb@lates the impact of different
vocabularies on behavioural diversity, robustness ofi@aesed behaviours and learning
process. The case study is a locomotion task of running avicidgréhe robot stand up
from a lying position. To investigate these ideas, the quield robot MiniDog6M is
controlled by a simple sinusoidal function for each of itstare. Further, we apply rein-
forcement learning to train a linear approximator estingat Q-Function for a variety of
motor primitives, each consisting of a set of frequencies.

Keywords: Motor primitive, morphology, behavioural disgy, linear approximator, re-
inforcement learning, sinusoidal control






1. Introduction

In the course of this introduction, we first motivate the basiinciples underlying our
research. On that basis we explain about our project andyfigiak a description of the
structure of this thesis.

1.1. Motivation

The overall goal of embodied Al and behaviour-based robasi¢o provide insight into
animal/human behaviours and facilitate the improvemedtdevelopment of new skills
in robotic systems.

While many animals reach enormous speeds, most of todaybslenobots are capable
of slow locomotion only. The reason for this is quite simpgach movement is static
and fully controlled. In contrast, if we have a look at nat(marselves in the first row),
locomotion is anything but fully controlled. Biped walkintpr instance, more or less
resembles forward tumbling. Gravity takes a major role itkiag. Many more examples
can be found where physical interaction either within owlybor between our body and
the environment substitutes active control. One examplleasexistence of natural rest
positions in pairs of counteracting muscles. This postsrespecially energy efficient
and it can effortlessly be reached from every other postigelyy letting go. Further, we
notice that the elastic properties of our hands and feetusetp passively adapt to uneven
surfaces. These are just two examples that everybody camierpe in his/her own body.
This principle of exploiting the givens is applied in the neodl approaches to artificial
intelligence, the so called new Al, embodied Al or behawibased Al.

Operating in natural environments, it is absolutely esakfdr mobile robots to enhance
adaptability. Flexibility is crucial. Drawing inspiratidrom nature as a first class designer
of adaptive beings, we find that humans often gather newtialihot from scratch, which
means acquiring new motions (or ideas) without a priori kieolge, but rather we gain
highly sophisticated abilities by combining well known lexlevel components. There-
fore, it is reasonable to assume a hierarchical behaviquresentation where abstract
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Figure 1.1.: MiniDog6M

behaviours are represented as a sequence of lower levelnrmovgrimitives. While
higher levels plan complex behaviours such as standinghepjetailed motor scheme is
accomplished in lower levels. Evidence for this distribatcan be found in various ani-
mals, but as well in the human spinal cord which takes a majerin complex movement
generation [Tani 02, Bizzi 84, Feldman 80].

One of the best explored examples of movement primitivesbeafound in the nervous

system of the frog [Giszter 93, Mussa-Ivaldi 94]. When sglegoints of frog’s spine are

stimulated with electrodes, its legs automatically perfar fixed behaviour e.g. wiping.

Careful studies found only few of these point, which leadh® assumption that about a
dozen of those primitives are enough to produce a frog’'seentovement repertoire by
means of sequence and superposition.

Applying this principle to robotic environment, these mmant primitives represent mod-
ules that are repeatedly found in complex sequences of rpattarns. In contrast to other
approaches that rely on adaptive basic behaviours, themgahthe frog suggests fixed
primitives. They ease learning in more than one way. On ond hthe learning process
is accelerated, since the agent acquires new behaviourengsosite temporal ordered
combinations of low level primitives. This significantlycces the search space of pos-
sible postures and trajectories. On the other hand, relging set of basic behaviours
not only simplifies the generation of movement, but alsolitates its perception. The
existence of sensory-motor-integration in mirror neuravisich are equally active when-
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ever a motion is observed or executed, proves the theorybdtaviour primitives are
simultaneously used to recognise and plan motions. Thusitgathrough imitation is

eased [Schaal 99, Kuniyoshi 94]because the robot identigdisknown patterns in new
temporal order instead of a complete series of angles fdr saator. Moreover, when

confronted with an incomplete sensory input, predictiomistivated through constant
classification of observed movements into its known rejrextorhe latter is approved
by developmental psychology providing evidence for goabjrtion in infants while ob-

serving incomplete or incorrect actions.

In addition, motor primitives are a simple and effective @geh to solving the degree-
of-freedom problem. Since the Russian scientist NicolanBin was the first who for-
malised the difficulties arising from a physical body havingre degrees of freedom than
the actual task, this is also known as Bernstein problemdRosum 96]. A plain exam-
ple to illustrate this issue is the position and orientattban object in space compared
to the degrees of freedom of a human operator trying to gtasfghereas we need only
six descriptors to determine the position and orientatiaand3D object, there are infinite
possibilities for us to approach our target. The reasorhfatris that the number of degrees
of freedom of the human body is larger than the number of taskriptors. Moreover,
there is an exponential increase in the state space andrthine humber of actions that
can be generated in a movement system with many degreesedbfre Bernstein also
emphasised that the state space is often smaller than $eddesn the bare number of
joints or effectors, since morphology restricts the actwathber of possible postures.

Regardless of the method used to acquire the skill, it is hyidelieved that all sorts of

movements seem to be designed as cyclic motions. Analysisiofal locomotion sug-

gests that these motions are generated by neural networ&ls auie capable of generating
basic rhythmic motor activity. Recent advances found in r@etsa of legged locomotor

systems, for example, in the mud puppy (Heterocephalugglaie turtle (Testudinata),
the cat (Felix felix) and the stick insect (Carausius mosdstinat the central network can
be decomposed into multiple lower level generators, eackr@king a subunit such as
joint, segment, or muscle of the locomotor system [Blscldgés Thus complex joint

angle trajectories are generated by composing oscillatmyements with lower com-

plexity. To simplify matters locomotion is often the resaftsuperposition of different

cycle frequencies of the different muscles.

All these ideas and concepts motivated us to investigaterthact of cyclic motor prim-
itives and morphology on locomotion control for a quadrupgabt. The assignments of
this project are described in the next section.

1.2. Project description

This project aims at investigating the impact of motor ptiveis and morphology on lo-
comotion control for a quadruped robot.

The theory of having a basic set of motor primitives which barcomposed into a broad
and general movementrepertoire has served as inspiratibelfiaviour-based control and
robotic models. Their development is one of the most regents in the field. While it
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is obvious that the introduction of powerful, adaptive mgiamitives (and thus avoid-
ing online trajectory planning) is an appealing organaai principle, three questions
remain open:

1. What should the primitives in such a basic set be like?
2. How can those discrete entities be derived from morphcédgroperties?

3. How can generic primitives obtain enough informationdomplex adaptive behav-
iours?

The latter can be answered quickly pointing out that theasgmtation of a complex func-
tion as a linear combination of much simpler functions is dl wstablished theory in
mathematics and physics. Parts of the other questions svél&borated in the course of
this thesis by investigating the influence of morphologmahstraints to motor control.
Combining the issues mentioned in section 1.1, we createthati@ogy that helps to
derive several design principles for meaningful motor ptires.

Behaving in natural environments with all its’ disturbascrobile robots may tumble
and fall from time to time. In order to fulfil its task nevertess, the robot needs to first
recognise the mere fact that it fell and consequently be tabétand up. Therefore, our
case study is a locomotion task involving standing up.

The hardware platform underlying my research is a quadrupkadt developed by Fu-
miya lida at the AlLab of the University of Zurich. Followirtge principles of embodied
Al, the so-called MiniDog6M, which can be seen in Figure Inlpage 4, is able to move
quickly by employing plain hopping as found in nature. Trapability is obtained by op-
timised design which means that most of the control is cors@iea by exploiting some
simple physics, such as the resilient properties of a spnelgling a passive degree of
freedom in each leg.

The robot dog will be toppled by a random force applied to @adwhile running. Then

MiniDog6M shall get up and carry on its way. Contrary to agmizes that rely on human
interference, this thesis tries to enable MiniDog6M to ftself out of this situation. This

assignment is accomplished only by few robots - especiaityamong quadrupeds.

The first step in a row of experiments leading towards sucbeajunes examines the be-
havioural diversity of different vocabularies and morgigés and the validity of those
behaviours in environments with slopes. The second inyatets the impact on the learn-
ing progress.

The next section give a short description of contents of aukw

1.3. Structure and description of contents

In this section, we roughly characterise the main pointsachechapter of this thesis.
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After this introduction, in chapter two, the concepts umhgag our research will be elab-
orated. First, we will give a few examples where physicatiiattion between the body
and the environment substitutes active control. Aiming abst-efficient fast locomo-

tion, researchers engaged in passive running. We will shatapitulate the quadruped
model. Then, we will introduce the morphological and contancepts of the “running

dog project” which MiniDog6M is part of. Subsequently, wéraduce a framework for

the investigation of morphological implications on evalugehaviour.

After that we will give a quick overview of the state of the.affirst, we will intro-
duce Kenken and Scout 2 that serve to investigate complismmimg with springy legs.
Then we explain two successful strategies for oscillatooyement that are embodied in
Tekken Il and BISAM. For the latter, oscillatory movemenordy partially fitting, since,
its control strategy later changed towards a reactive tctire. The reasons for this
change will also be presented. Finally, the terminology sapfesentation of an assort-
ment of projects using motor primitives is overviewed.

At the end of this chapter, we will elaborate the entitlersdntthis thesis which result
from the concepts and projects presented here.

In chapter three, we will introduce the morphological andtoal concepts of our re-
search platform and subsequently provide a descriptioruofegperiments in the real
world which build the basis of our further studies. In thegenpry experiments with the
physical robot dog, several gaits and a pre-programmedisiguap motions are captured.

In chapter four, the first set of motor primitives will be extted out of these pre-program-
med sequences. Each primitive involves one or more motansh&r we will establish a
general means to evaluate them in regard of the frequer@gassign to the motors. On
that basis, we will work out several vocabularies, each attvibeing an assortment of
motor primitives that will be investigated throughout tthesis.

In the second stage, starting with chapter five, a virtualehotiMiniDog6M will be cre-
ated to enable further experiments with different morpgms which cannot be changed
effortlessly in the real world. Its implementation as wedltae simulation platform will
be described in this chapter. In doing so, we will introduoe public library Open Dy-
namics Engine (ODE), which is used for physically realisiimulation. The model of
MiniDog6M and its controller will be specified afterwardsn&lly, the morphologies that
will be investigated in the course of this thesis will be stde.

In order to quickly overview the behavioural diversity, gtanding up sequences in chap-
ter six will be generated as trial and error combination efahderlying motor primitives.
This chapter describes the first row of experiments for tlauation of the vocabularies
selected above. First, we establish a general means to centgabehavioural diversity
of different tasks or vocabularies. To get an intuition foe tariety of legal standing up
sequences and to investigate how the shape of the headsafiedbehavioural diversity,
we will run a full search simulation. Performing the samé §darch in inclined envi-
ronment we will be able to overview how such changes affexintiture and amount of
solutions. This second set of experiments addresses antampcharacteristic of robot
control: robustness.
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Then, in chapter seven, we engage in learning, since triakanor at random is generally
not a good strategy for an agent to behave in natural envieahnilo get along in new

situation, structured search and learning is much moralsleit Therefore the support of
the learning progress is an important feature of a good hasiabulary. In this chapter,
the design of the learning environment and the experimesetaip is described. We ac-
commodate an artificial Radial Basis Function network foe@ming with the different

combinations of head and vocabulary. The Reinforcementriieg Toolbox is used to

perform the learning process of this linear approximatoralfy, the learning progress of
each vocabulary in dependency of the shape of the head waNdleated.

At the end, chapter eight will sum up the main points of ourkvamnd the results gained
from our experiments. Together with these concluding ré&syawve will further give an
outlook on future assignments that directly hook up on thenBwork presented in this
thesis.

In the appendix we provide a glossary, some additional data® behavioural diversity
and transfer capabilities gained from our experiments withsimulated MiniDog6M.
Moreover we provide a set of training patterns for supedrisarning derived from the
latter mentioned data set.



2. Challenges in legged locomotion

In this chapter, modern principles of robot design, leggembinotion, energy efficient
fast running and a framework to systematically investighésinfluence of morphology
on evolved behaviours are presented. Further, an assdaroheslated projects is sum-
merised. Finally, the resultant entitlement to this thesmutlined.

2.1. Importance of morphology

In this section, the reasons why it is important to stresspimalogy in a robot’s design
process are given. Usually, morphology is used in the comtieanimal physiology. In
the broader sense, we copy this term into technical enviemtsmeaning the shape, ma-
terial, choice and placement of sensors and actuators dfcd fiefeifer 99].

In the traditional approach to robotics, designers usyakyletermine the morphology of
the desired robot and afterwards design a controller aouptd the given mechanical de-
sign. Further performance enhancements must thus be adiigough improvements in
control. This methodology has on one hand led to many sultdes®l famous examples
of biped walking such as the Honda humanoid series, but ottier hand left unex-
plored the numerous fields that take advantage of optimisggimology and its intrinsic
dynamics. Recent advances in embodied Al proved the gréaeinte of mechanical
structure, sensor and actuator placements on the perfoentdra robot.

Talking about the importance of morphology in locomotiomr, @me across the passive
dynamic walker [Pfeifer 03b, McGeer 90a, McGeer 90b] whiah be seen in Figure 2.1
on the next page. This extreme example of parsimonious ad®gn is capable of walk-
ing down a slope without active control. Hence, the walkeateer a mechanical device
than a robot (at least not in the common sense of a robot)e sinelies purely on the
body dynamics of swinging legs and arms. As a result it is teethe small ecological
niche of medium inclines with flat surfaces. Though thereasatuation but gravity, its
walking looks very humanlike. However, for the robot to belagable in natural environ-
ment, actuation and consequently control would be a ndgebivertheless, it is a great
example of cheap design. Cheap in this connotation refgrargimonious robot design
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Figure 2.1.: Passive dynamic walker
A mechanical device that is capable of walking down a slogk wo actua-
tion but gravity.

which exploits the physics of system-environment-inteoscas well as the constraints
of the ecological niche. In doing so, the system’s inhergmiadhics achieved by proper
design partly substitute active control.

Paul and Bongard [Paul 01] for the first time optimised motpgp simultaneously with

a closed loop controller in a single process to achieve astaipled walking. Being one
of the first mechanical design decisions, they addresseprtiiem of mass distribution
along the biped skeleton in terms of positioning motors agatg, which usually supply
the heaviest components in a robot.

3 0
L

- - ™

Figure 2.2.: Simulated biped construction
This skeleton with six degrees of freedom is shown with @igimd without
(left) mass blocks attached to it. The position and the géoocaédimensions
of the discrete blocks is evolved together with a closed looptroller to
investigate the simultaneous optimisation of morpholagy eontrol.
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The simulated robot, which can be seen in Figure 2.2 on thedguage, has a waist
and two legs consisting of an upper and a lower part. The nmuakejointly six degrees
of freedom. It contains two haptic sensors in the feet andprpyceptive sensor in each
joint. The joints are driven by torsional actuators limit@th ranges of motion closely re-
sembling those of human walking. Because of its intrinsjatdity of producing cyclic
dynamics, the controller was desinged as recurrent neatalank. The aim was the de-
velopment of stable gaits by evolving an optimal contraibgyether with the position and
the geometrical dimensions of discrete blocks and herestittly the effect of changing
mass distributions on the robot’s dynamics.

Three rows of experiments were investigated dealing withamimid range and major

reallocation of weights. Interestingly, the more stablgsgaere achieved, the higher the
allowed degree of weight shifting. These results suggedtrtforphological changes can
indeed optimise performance.

Another interesting example is the Eyebot [Lichtenste@fErPfeifer 05], which can be
seen in Figure 2.3 on the next page. This project supplieteace that the computa-
tional effort can be drastically reduced by optimised septacement. An evolved sensor
arrangement of artificial eye facets (here: light sensitiets) automatically brings for-
ward a design where the optical sensors are more dense wtt@dront. Thus a navi-
gation task is significantly eased by compensating the phenon of motion parallax
This phenomenon can also be found in the compound eye of tsefp.

Further, we already mentioned the natural rest positionaiscles and the self-adaptation
of our hand and feet.

The robustness, ease and flexibility of these solutions givelea about the advantage
of exploiting body dynamics. Many different solutions canezge naturally. Emergence
here indicates that behaviours which are not explicitlycgpe in the robot program,
come up as a result of agent-environment-interaction €169, Pfeifer 03b]. This dis-
tribution of work is visualised in Figure 2.4 on page 13.

One of the advantages of the emerging of behaviours is treavaf the symbol-groun-
ding problem. Traditionally Al works with internal symbaohd their relations, but these
symbols are not grounded in the system’s understandingraé@chction with its environ-
ment. A human user or developer automatically maps the slgnibdhe representing
objects. The relations between internal representatindgteeir physical correspondents
as well as the possible resulting interactions are foundealr experience. We see a
car, we know that it's the object’s name is “car” and that wa daive away with it if
we own the keys. If the concept “car” is already known, the piiag between the con-
cept and its properties can easily be achieved by a computereas the first problem,
namely the identification of an object on the basis of givamsee input, is a really dif-
ficult problem. Neural networks by themselves are not capablesolving it and thus
start from designer-defined high-level ontologies. Conset]y, gaining suitable sen-
sor data through embedding the sensor(s) appropriatelyeimgent’s architecture is of

1The phenomenon of motion parallax can easily be experiebgddoking out of a moving vehicle.
Objects that are closer to the observer seem to move mugr fhan the ones that are far away.
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Figure 2.3.: Eyebot
Adaptive arrangements of light sensitive significantlyuess computational
effort by compensating the phenomenon of motion parallax

great importance. Being useless in classical computenseibecause it lacks system-
environment interaction, it is a central challenge to raisofPfeifer 99, Pfeifer 03a].

Talking about symbol grounding, yet another difficult peil has to be taken into ac-
count. The object constancy problem addresses the faankaibject leads to set of very
unlike sensory patterns depending on viewing point ancsuaings. Categorisation on
the basis of this almost infinite search area is truly a lowfilwork. The approach of em-
bodied cognitive science reduces the complexity of this bgsdesigning an autonomous
agent that learns its concepts through active interactiibim ¢ environment - not only
through observing the world passively. The goal of theseades is the active creation
of well directed sensory inputs using sensory-motor co@tion and thereby reducing
the input space. This attempt resembles natural human ioeinavt can be compared
with a human child that turns an object in front of its eyes &ked distance and then
bites into it. This behaviour structures the input and bg thieans induces regularities
that significantly simplify category learning, an importgmecondition for intelligence.
Apparently finding the proper morphology and above all sepssition is fundamental
for generating stable input with sensory-motor coordomafPfeifer 99, Pfeifer 03a].

The lesson that can be learned out of these examples is theverything must be con-
trolled by the brain respectively the robot program. Phalditteraction either within our
body or between our body and the environment can often easeeorsubstitute active
control. The consideration of a morphological change caendbe much more efficient
than improvement of the controller. This distribution ohgoutational and control func-
tions between controller and morphology and environmeaoalled morphological com-
putation.
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Body
Dynamics

Emergent
Behavior

Figure 2.4.: Division of control in emergent behaviours
Emergence means that behaviours are not explicitly spedifi¢he robot’s
program, but come up as a result of agent-environmentaatien instead.

The next section is on general and particular approachegg®etl locomotion and passive
running.

2.2. Approaches to legged locomotion

In this section, general concepts of legged locomotion aadtavith. Further a passive
quadruped runner is presented and the “running dog projedtich our experimental
platform is part of, is introduced.

2.2.1. General concepts

Recent entitlements to increasing range of robotic apjptina have led researchers to the
limits of wheeled and tracked robots. For application oaguiar terrain, adaptable lo-
comotion machines with many degrees of freedom have raisextian. Unfortunately,
adaptability comes at the cost of complex control and lowgnefficiency. As it is es-
sential for (power) autonomous mobile robots to reduce th@iver consumption and at
the same time maximise the utilisation of their operatidimag, a lot of effort has to be
spent on energy efficient control of fast running. One of tiggést problems in fast lo-
comotion is the extremely short response time for the sgrieedback control loops that
are usually employed in walking robots.

Breaking up locomotion into a series of steps, each stepepalsough the same phases.
Statically stable walking on one hand needs first to reledsg,dhen to swing it towards
the desired position and finally to stabilise it again. Dyiaity stable running, on the
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other hand, self-stabilisation achieves through propelylttynamics and thus lacks the
stabilisation phase. First, in the stance phase, all leggstithe body weight, whereas
in the flight phase, the legs are significantly released on éfted off the ground. Exam-
ples in which these phases can clearly be discriminatedowilbresented in subsequent
sections.

Regarding the biological background (as already introducechapter 1), the ongo-
ing debate whether periodic movement is based on eithexesfléas in the frog) or
neuro-oscillators (as in the stick insect) seems to corcluidh both in collaboration
[Luksch 02].

Here reflex’ means a goal-oriented behaviour tightly cedpo the strength and type of
sensor stimuli. This sort of behaviour is initiated by vegiee or motor processes. A
neuro-oscillator is a neural network that, irrespectivéhefcurrent sensor state, produces
rhythmic impulses each of which kicks off a motor action. Abasequence, reflexes are
much more situated and adaptive than neuro-oscillatorisofRoexperiments [Ferrell 95]
compared three different control strategies found in itssbg implementing them on a
hexapod robot. The results showed that CPG performs mubdr bleain purely reflexive
approaches. Recent advances revealed mutual influencetlorsdieemes via sensory-
motor-coordination. While CPG dominate in general, refeteke over when dealing
with disturbances. In doing so, the activity of single measobr groups of muscles are
modulated and coordinated e.g. at spinal cord and brain, stem

Technically speaking, methods for legged locomotion adrdan be classified into zero
moment point based control (ZMP) and limit-cycle-basedi@fLuksch 02].

ZMP is the “extension” of the centre of gravity considerimgitia force which means
that the centre of mass must always be above the bearingfatealmdy. Consequently,
each motion is statically stable. As the whole body motiorstie considered, ZMP is
mainly controlled by an upper neural system. From the staimtipf energy consumption
this approach is effective only for posture control and shealking, since with every step
the large body mass must be accelerated and decelerateduayoas. Moreover, this
statically stable pace can lead to deadlock situationsrevités impossible to lift a leg

because this would lead to an unstable situation. Thesdgmnshmust be considered in
advance and therefore require complex planning mechanisms

Superior energy efficiency and dynamic stability is achikvg limit-cycle-based control.
The term limit- cycle refers to the fact that the motions meiplane form a stable limit
cycle on the phase plane. This stability is achieved by radtamg support of the legs. A
typical example for limit cycle based control is the passiyaamic walker, which was
already mentioned aforement. This category can be dividetdr into control by lower
neural systems (CPG and reflexes) and mechanic control byngsgamper-system. Re-
grettably, the first subcategory is appropriate for not nibeen medium-speed. The sec-
ond concept of compliant legs is realised in the “running dogect” and accomplishes
high-speed running through self-stabilisation.

Contradictory to statically stable machines, dynamic tootion with compliant legs sup-
ports higher speed and drastically improves mobility eriradsn simplified mechanics.
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As a penalty, discontinuous storage and release of enerpeipassive leg compliance
is needed and, as a consequence, it is not longer possibtentmkthe body motion

directly. Pioneering work in the field of effective uncorited running behaviour was
accomplished at MIT’'s LegLab in Boston. Raibert et al [Pkalgs 05, Raibert 85] en-

gaged in springy legs of telescopic form and realised motopged, and quadruped
robots capable of various gaits. They found that such quuedis; do not need active
posture control in bounding gait as long as their body’s muion@ of inertia is smaller

than its mass times the square of the hip spacing. Moreovery Tevealed passive trot,
gallop or bound is possible in both stance and flight phadeeisiystem is provided with
the proper initial conditions.

Meanwhile, even legs with adjustable stiffness were sugdan order to adapt to differ-
ent surfaces [Ferris 98].

2.2.2. Passive running in quadrupeds

Aiming at a cost-efficient way of fast locomotion, passivaning on robots with one,
two or four legs were investigated after the paradigm of thesjve dynamic walker. Let
us briefly look at the quadruped version [PassiveRunning 05]

The assembly can be seen in Figure 2.5. In place of activataty three springs are
attached at each leg. Two of them symetrically connect thédéhe body, one on the left
and one on the right. The third attaches the foot to the lowdra# the leg. This design
saves the leg swinging energy. In doing so, each leg has tasiyeadegrees of freedom:
a rotational and a linear one.

Figure 2.5.: Schematic of the passive quadruped runner
This design saves the leg swinging energy. Each leg has tasiveadegrees
of freedom: a rotational and a linear one.
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Creating a simulation, the leg mass is taken into accountusThis approach covers
not only the body’s oscillatory pitch motion, but also relgethe swinging properties
of the leg. Since there is no specific running sequence datgidnthe propagation of
learning follows no specific order. Each step can be dividéaflour phases triggered by
touchdown or lift-off of front respectively hind legs whiahove in parallel. The transition
between these phases can be seen in Figure 2.6. In doublerswppich is always the
initial phase when a robot starts to move, all legs stand egitbund and support the body
weight. Performing a regular hopping behaviour, the fagekhould be released and lifted
off the ground, which would bring the robot in hind leg staptase. After pushing to
robot forwards, the hind legs are automatically releasethvbrings the robot in flight
phase. Next, in fore leg stance, the forelegs have reacleagitiund and start take on the
body weight. The initial phase is reached as soon as the wisigimce again supported
by all legs. Depending on the particular gait, the phasesaome up in alternating order.
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Figure 2.6.: Phases of passive running gaits
All resulting gaits have proven to be symmetrical, but ubkgta

All passive running gaits found during the analysis of thawdation are symmetrical.
Unfortunately, uncontrolled running is secure for not mtiren 25 steps. By the 26th
step, the quadruped is no longer upright, but has eitheedamter the forelegs (during
fore leg stance) or toppled over the hind (during hind legstq Thus all resulting gaits
have proven to be unstable. Actuation is needed to keep awpsaiupright.

2.2.3. The “running dog project”

The challenge to biomimetic design aims at reproducing tiaber of passive joints,
dimensions of limbs, weight, properties and locations ofsahes of natural systems.



2.2. Approaches to legged locomotion 17

Aiming at a minimalistic, but still biologically plausibldesign for fast locomotion, the
“running dog project” was founded by Fumiya lida in order nwestigate a big variety
of morphologies. All its members, amongst others our reseptatform MiniDog6M,
comply to the same morphological and control principledd 03, RunningDog 05].

2.2.3.1. Morphological concepts

Looking at nature, we notice that limbs comprise pairs ofntetacting muscles (antag-
onistic principle), but that they also have natural restifposs. As a substitute, many
technical systems contain springs as artificial musclesn&pqualitatively approximate
several natural properties of the muscle-tendon systanextample unidirectional actua-
tion, multiple passive joints moved by a single motor andlim@ar torque depending on
the angle of the passive joints. In addition, they are cheagiespread and available in
many different variants such as size, spring constant andriak

One of those biologically inspired projects using sprirgghie quadruped Geoff, which
can be seen in Figure 2.7 and which was designed after arctbstidies of a canines
musculoskeletal system.

Figure 2.7.: Geoff in photo (right) and schematic (left).
Geoff was designed after anatomical studies of a caninescoloskeletal
system and is the first member of the “running dog project”

Its skeleton is approximately 750 mm long, 300 mm wide, 600 tallrand made of alu-

minium. Geoff contains 28 rotational joints with one passilegree of freedom. The
rotation angles are mechanically restricted and capabkmail translational displace-
ment. A binocular active vision system with four servo-metand two miniature CMOS
cameras are installed in the robot's head. The red linesgar€i2.7 depict the position
of the springs.

Geoff is the first in a series of quadrupeds articulating thmfing dog project”. Thus
Geoff had many descendents that concentrate mainly on gigdef adequate legs. The
underlying canine leg design is qualitatively shown in Feg.8 on the next pag&as-
trocnemius PlanatariandSoleusare muscles connecting the heel to thigh and shank. The
corresponding antagonists are not shown.
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Thigh (Femur)

Gastrocnemius,
Plantaris

Soleus Shank ( Tibic)

Foot

Heel (Hack)

Figure 2.8.: Schematic of a dog leg
Gastrocnemius PlanatarsndSoleusare pairs of counteracting muscles (an-
tagonistic principle).

The one robot, that embodies this leg model most closelyupp? which is shown in
Figure 2.9. Each of its legs is designed identically withependent servomotors in hip
respectively shoulder and knee. The motors are marked witbnaircled cross in the
schematic. Two springs in each leg connect the lower patiefdg (heel) to the upper
(thigh) and the middle part (shank) and thus substitu@agtrocnemius Planatariand
Soleudn Figure 2.8. So far the motors in the knees are fixed. Fyrthéexible spine is
used in order to support far jumps and thus fast running. Asavesee, this is a great
example of cheap design.

Figure 2.9.: Puppy in photo (left) and schematic (right).
Its legs are designed after the schematic of a canine’s |€ggure 2.8. Its
passive flexible spine supports far jumps and fast running.

After Puppy, many other quadruped were developed. Eachgsiem its design, size and
material, but constructed according to the same principléss show just a few example
in Figure 2.10 on the facing page without going into detalil.

The most remarkable point is that the one on the left handgetie even along without
any spring at all. The springy property is provided by thes&tamaterial of the legs. The
robot in the middle is MiniDog, the closest relative of MimmB6M. The new aspect in
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MiniDog6M is the active spine that enables the agent to tanst bend. The exemplar on
the right has the identical leg design as MiniDog, but isisea with different material,
leg diameter and relatively sharp ends.

Figure 2.10.: Members of the “running dog project”
Left: The springy property is provided by the elastic matieof the legs
Middle: MiniDog, a close relative of MiniDog6M, but withowatctuation in
the spine
Right: Identical leg design as MiniDog, but different maér

2.2.3.2. Locomotion concept

The outstanding characteristic throughout the runningmogect, is that all the different
morphologies are controlled with the same simple controllbe approach combines high
speed, energy efficiency and robust yet simple control inigueway. This is especially
remarkable in face of the great variety of morphologiesféinedegrees of freedom of the
legs and the lack of sensory feedback.

While most locomotion approaches need to distinguish stand flight phase, the springy
legs need neither control for jumping nor for landing. Thipd of springy locomotion
requires neither task-level or body state feedback norectintrol over the leg length, be-
cause it relies to a large extent on the self-stabilisingery of the spring-mass-system.
Hence MiniDog6M’s (as well as the other members’) locomotan be controlled via a
simple sinusoidal control law [lida 04a, lida 04b].

Though the resulting hopping behaviour is quite irregulae, average speed can be con-
trolled by means of frequeney, amplitudeA and phase delay between front and hind
legs.

The resulting controller equations being in command of #reas are as follows:

Front/right hand legsM otorvalue = A * sin(w x o) + of fsetFront (2.1)
Hind/left hand legsM otorvalue = A x sin(w * 8 + ¢) + of fset Hind (2.2)

Herew is an integer variable increased in each controller steqalised with zero when
the dog robot starts moving. The decision on sinusoidalrobmtas not at all arbitrary,
but biologically inspired [Seyfarth 02].
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Figure 2.11 gives an impression of the motion sequence ofuheing robot’s legs.
Though captured from Puppy, a close relative of MiniDog6i ir-)regularity is repre-
sentative for all members of the “running dog project”. Pupgrved to investigate speed
control and the influence of friction.

= . \
Figure 2.11.: Motion sequence of the Puppy’s legs

Its (ir-)regularity is representative for all members oé ttrunning dog
project”.

As we can see the running dog project is a great example obgical balance, cheap
design and morphological computation. Ecological balaneans equal complexity of
a robot’s task, morphology and controller. The overall aptcof sinusoidal control
is implemented in all members of the “running dog projectdaven in an artificial

fish [Ziegler 05, Pfeifer 05]. For detailed information orfs#abilisation, speed control
and the influence of friction, please refer to Fumiya lidasrkv[Pfeifer 03b, lida O4a,

Pfeifer 05].

In the subsequent section, a methodology to examine howirotwgical properties influ-
ence evolved behaviours is introduced.

2.3. Isolating morphological effects on evolved behaviour

As already mentioned, Paul and Bongard investigated thengattion of biped weight

distribution simultaneously with a closed loop controlierachieve stable walking, but,
generally speaking, little effort was spent to identify therphological properties that
make an agent suitable for a given task or controller degignoutstanding example for
such investigations in legged locomotion will be presemtettiis section.

One of the sparse systematic investigations was performddubd et al who showed
a correlation between body size, wheel base and sensor eamgthe performance of
wheeled locomotion [Lund 97]. Having biologically motiealt systems and thus legged
locomotion in mind, the work of Bongard and Pfeifer is muchrencelevant for us
[Pfeifer 03b].
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They engaged in comparing evolved locomotion for ten legagehts which are shown
in Figure 2.12. Irrespective of the particular body struefieach of the robots has an
identical sensory system, actuation and controller design

Figure 2.12.: Evolved locomotion for ten different morpbgikes
Quadruped and hexapod locomotion is especially stableafas$ easy to
evolve. Regarding evolved control with neural networke,fierformance of
other agents can eventually be predicted comparing thehetortes above.

All of the agents are controlled by a partially recurrent naémetwork. The input layer

receives input from four touch and four angle sensors. Theulayer sends commands
to eight one degree of freedom torsional motors. Input, widpd hidden layer are fully

connected. In addition, the hidden layer is fully recuriecbnnected. All weights are

evolved using a fixed length, generational genetic algaritRach evolutionary run was
conducted using a population size of 300, and was run for 20@mgtions. At the end

of each generation, strong elitism was employed with anameeof three point muta-

tions using random replacement. On that basis they trie@étvala general policy how

morphology can ease or complicate the evolution of behasifmr simulated agents.

Comparing the respective locomotion stability and spdes), tound that quadrupeds and,
above all, hexapods are particularly good candidates fatwtb evolve locomotion based
on neural networks. Since the number and type of sensorslbasmetuators are constant
across all models, the reasons for that must be found in #afgpshape and mass. One
part of the explanation is a partial negative correlatiotwleen mass and performance.
Unfortunately, this is not a sufficient explanation, sinice three best agents (agent 2, 3
and 6 in Figure 2.12) offend against this apparent principlethermore, additional hid-
den neurons improved the performance especially of segrdagtents with many similar
parts. Most of the agents achieved a relatively rhythmit@aiing evolution.

Such a systematic investigation of many different morpg@s could help to predict the
performance of new robots within this evolutionary framekyaf the unexplored agent
shares one or more of the morphological characteristids avitagent that was examined
earlier. Consequently, it is important to explore furthewtthe morphology and control
can be designed simultaneously in the process of evoluiiamraontogenetic develop-
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mental processes

By now, methodologies were proposed that evolve completrtagBongard 03, Pfeifer 03b],
which means morphology and controller at a time, but thepeosghes are still quite re-
stricted to single tasks and non-arbitrary morphologiegpically, those agents can be
composed of only few basic shapes, sensors and materiatse 8bthem still require
quite a lot interference from human designers. So far alhtsgeéesigned by such an au-
tomated design process are tested only in simulation.

In the next section, the so called “state of the art” is presn

2.4. Related work

To provide an overview over the achievements in the field gféel locomotion, an as-
sortment of projects is presented which are related to aajeptrron the subject of mor-
phological computation, compliant legs with springs, fastning, cyclic movement or
use of movement primitives.

2.4.1. Morphological relevance in standing up

A whole body dynamics biped of humanlike shape, size, massldition, mobility range
and strength was developed at AIST and later at the Uniyeod$ifTokyo. Aiming at
generality and openness, the robot with the average heighwaight of a Japanese person
possesses 46 degrees of freedom [Pfeifer 03a, Kuniyoshi 04]

Through exploitation of natural physical dynamics and wstharse control at critical
points, the experimental platform shown in Figure 2.13 aféting page is able to stand
up with roll and rise motion as observed in humans withoutiassg a particular task
or posture. The control was entirely open-loop. This apginda closely related to the
principle of cheap design as the programmer intuitivelyod®s some intermediate key
postures, arranges them in appropriate temporal orderetridd natural dynamics take
care of the rest.

The actual movement was not self acquired, since the rdleearstants are adjusted by
human operators to save time. Anyway, the more interestigt jis the fact that they
found critical points where trajectories converge (coregagure 2.14 on page 24) and
that only these points are decisive for success or failutkebverall standing up task. As
a result, the particular motions can diverge between atipoints, but the completion of
the goal is more tolerant of small perturbations in the pestand dimensional parameters
of the robot’s body.

This is a great example of how a proper weight distributiom le&ad to good dynamics
and thereby ease the given task.
2.4.2. High speed running with springy legs

In this subsection, two compliant leg models with springls mé presented. Though both
are suitable for fast locomotion, they comply with diffed@sign and control concepts.

2This concept of Hardware-Software-Codesign has for a lang been addressed by the wide field of
embedded system.
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Figure 2.13.: Schematic (left) and photo (right) of Kunilgpand his biped
A whole body dynamics biped of humanlike shape, size, madsldition,
mobility range and strength that is able to stand up withaodl rise motion.

2.4.2.1. Empiric control of biologically inspired leg

Being inspired by biological standards, several parsimasiieg models for high speed
running were developed. Focusing on the geometric aligharehfunction of the muscle-
tendon system of canine’s ankle joint, the one-legged nmrobot Kenken was built in

1999 [FastRunning 05]. Figure 2.15 shows Kenken in photosghématic.

Kenken's leg design can be decomposed into three links.ek tvgo hydraulic actuators
as muscles and a linear spring as a tendon. As a result Kergdsetwio active joints in
hip and knee and one passive joint in the ankle that enalde®éhto rotate freely on the
ground during the stance phase. The leg spring between igite dhd heel is attached
in parallel to the shank. This arrangement allows the robg@roduce sufficient propul-
sion force by means of energy transfer from the knee duriagtance phase. Absorbing
the impulse at touchdown, the leg spring stores the availkibletic energy as potential
energy for the next step. A knee extension contributes iathdit energy. During swing
phase, it enables passive retraction and extension ofdt®yleeleasing the stored energy.

Using foot switches and six potentiometers at each joingrapirical controller based on
the uncontrolled dynamics derived from the leg model waslbped. Hence the robot
has succeeded in one-legged hopping experiments provaghils leg mechanism is in
fact effective for running. The induced motion sequenceegicted in Figure 2.16 on
page 25. Whereas the simple controller function employéderfrunning dog project” is

suitable for many different morphologies, Kenken'’s colrowas designed empirically
based on analysis of the characteristic dynamics of thetrobo
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Figure 2.14.: Roll and rise trajectories
The particular motions can diverge between critical poin@nly these
points are decisive for success or failure of the overafiditag up task.

As a direct extension of Kenken, a planar biped robot nametk&e |1 was developed to
realise not only hopping, but also biped walking and running

2.4.2.2. Cheap running with teleskopic joints

Another highly non-linear quadruped project utilising agmiant leg design with springs
is the Scout 2 in Figure 2.17. It is the first power and compaally autonomous
quadruped robot that achieves compliant running with aalirspring forming a tele-
scopic joint and only one actuator per leg for rotation inghgittal plane [Poulskakis 05,
Buehler 00].

The torso contains the computer unit, the 1/0O boards anc:thatteries. The front and
hind hip assemblies include two additional batteries, ti@ rdotors, PWM amplifiers,
gearboxes and pulleys for actuation.

Two controllers realise a PD algorithm and command the DCorsdhdependently for
front and hind legs. By simply controlling the constant degihip torque during stance
and the constant desired leg angle during flight phase, fabilty with energy effi-
cient stable velocity control up to 1.2 is reached. Therefore the controller requires
touchdown/lift-off detection and local feedback of the &gles relative to the body pro-
vided by leg potentiometers and motor encoders. The line@nptiometers measure the
displacement of the lower leg with respect to the upper legrder to distinguish stance
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Body

Hip-actuator
Thigh

KNEE

Shank

Knee-actuator
Leg-spring
Heel Foot
ANKLE(passive)\\\\: TOE

Figure 2.15.: Kenken in photo (left) and schematic (right)
The leg spring between the thigh and allows the robot to predufficient
propulsion force by means of energy transfer from the knemgthe stance
phase. Absorbing the impulse at touchdown, it stores thiéada kinetic
energy as potential energy for the next step.

Stance phase

Flight phase
—_ — — —
\

Figure 2.16.: Kenken’s motion sequence

from flight phase. The angular displacement of the motortshafieasured by incremen-
tal optical encoders. The controller is structured in tweraichical levels and can be
parameterised for each leg individually by motor torquesespslope, maximum torque,
touchdown and sweep limit angles. Here, the touchdown arayie needed to achieve
cyclic motions. Each controller cycle is divided into fresation, position control and

velocity control.

In 2003, Scout 2 featured the simplest running control dligr and the simplest me-
chanical design.

2.4.3. Generation of rhythmic motion sequences

Various experiments showed the suitability of centralgratgenerators (CPG) in combi-
nation with peripheral controllers to accomplish periddicomotion. The CPG is often
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Figure 2.17.: Scout 2 (in photo and schematics)
Scout 2 featured the simplest running control algorithm tredsimplest
mechanical design employing a telescopic joint with a lirsgaiing and only
one actuator per leg.

modelled with a neural oscillator consisting of two mutyathibiting neurons, which
was originally designed to characterise the alternatinigaten of flexors and extensors
in a cat limb [Kimura 00]. As will be demonstrated, rhythmiotion sequences can also
be induce by a distributed control scheme.

2.4.3.1. CPG based control

The subsequent example introduces a quadruped that emplpyswvith springs con-
trolled by a neural oscillator network whose frequency rhascthat of the spring-mass-
environment-system oscillation to achieve dynamicabypkt motion. Tekken Il [Kimura 04,
Kimura 03, Kimura 01, Kimura 99], which is shown in Figure .4n the next page, is
a quadruped, self-contained robot that is capable of wglkiroutdoor natural environ-
ment. With its design based on biological concepts, Tekkerdlises robust medium
speed walking on irregular terrain and fast trotting on gatain.

Tekken Il has a hip pitch joint, a hip yaw joint, a knee pitchnjand an ankle pitch joint
on each leg. Whereas the latter can be passively rotatedthies are activated by DC
motors. To support locomotion, a hard and a soft extensyisiag were attached between
the lower limb and the long foot. The hard one is needed foclslabsorption and reuse
of the kinetic energy. The other one keeps the angle of théegaint constant during
the flight phase. This spring-damper system is controlle@ IB}D controller for each
joint. The passive hip knee joint can change the mechantif@ess of the spring-lock-
mechanism between the stance phase and swing phase. Incontesisure the body pitch
and roll angles, two rate gyroscopes and two inclinometersreunted on the body. The
direction in which Tekken moves can be changed by using {hgduv joints.

Tekken II's neural system is modelled by numerous levels BGE, reflexes and re-
sponses. Here reflex’ is defined as joint torque generatimh’@sponse’ means mod-
ulation of the CPG’s active phase, both as response on gefesatback. Using CPG,
each gait is described as stable oscillations of a robar@mwent system. The transi-
tion between two gaits is achieved by modifying a few paramsein the neural oscillator
network, which keeps these oscillations steady.
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Figure 2.18.: Tekken Il
Tekken Il is capable of dynamically stable walking in outdoatural envi-
ronment by employing a neural oscillator network whoseudesgy matches
that of the spring-mass environment-system oscillation.

Though Tekken Il and the “running dog project” comply wittfelient control methods,
both of them use legs with springs and oscillatory controkfaccessful dynamically sta-
ble locomotion. Tekken requires a highly complex controdlied therefore reaches much
more precise motions. Unfortunately, Tekken Il can onlydtap from a single prede-
fined posture, namely lying back in an upright posture withferet stretched towards the
front.

2.4.3.2. From CPG to emergence of rhythmic gaits

The biologically inspired walking machine BISAMLuksch 02, Ilg 00, Ilg 99, Ilg 98]
implements a control architecture for high numbers of degi&f freedom. Adaptation
and optimisation of different stable mammalian locomotiehaviours are accomplished
with the coupling of different control levels.

BISAM, which is shown in Figure 2.19 on the following page/&cm high, weighs 23
kg and consists of a main body, four identical legs and a h€hd.body as well as each
leg consist of four segments connected by five rotary jointed by DC motors and ball
screws gears. The sensory system is equipped with threeacmnpforce sensors in the
feet along with inclinometers and angle velocity sensothébody.

In a first approach, optimised adaptation is attained bynenieflex learning with an actor
critic algorithm and a self-organised RBF-network for ftiag approximation. The motor
actions are generated by the output of the oscillators ihattty and indirectly integrate
sensor information. Depending on the current sensor s&ftexes and higher level be-
haviours can add offsets or even actions to the oscillatqputtio adapt or even dominate
it in order to ensure the security of the robot. In contragh® “running dog project”,

3Biologically I nspired wAlking Machine
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Figure 2.19.: Biologically inspired walking machine BISAM
Adaptation and optimisation of stable oscillatory mamuaraliocomotion
is accomplished by coupling and superimposing of movemantifives
selected from different behaviour based control levels

BISAM'’s control architecture has to distinguish stancenfriiight phase and as a result
switch between two elementary oscillators that model tepeetive CPGs for either one
or the other phase. Consequently, the controller can easignd the swing phase due to
delayed switching between stance and flight plane. Such siljesncrease of the step
length becomes necessary, e.g. when, after the regulalesigih, the robot’s foot does
not touch the ground as its bearer steps into a hole. Thi®apprguarantees robust yet
slow locomotion. Aiming at faster locomotion, the respotise of the controller had to
be improved.

In view of highly dynamic environments, reactive contrdko$ early enough reaction and
much more adaptability than CPG. Belonging to the genetabcay of behaviour based
control, there is a close coupling between perception atidradnspired by psychology,
neurology and ethology, the basis for behaviour based @lowtis provided by Rodney
Brooks’ subsumption architecture [Luksch 02]. Here thetiler tasks are not decom-
posed into functional blocks that stepwise extract an envirent model and on that basis
create plans and appropriate reactions, but into behalicampetences instead. Unde-
manding behaviours or reflexes are implemented as simpheilsts-reaction-pairs. More
complex behaviours emerge through their hierarchical agdential interplay. Each ba-
sic behaviour only reacts to relevant stimuli. Concurresttdviours must be coordinated.
Higher levels can change the output and variables of lowetdewhile lower level know
nothing about the existence of higher levels. Thus the actire can easily be extended
with further higher behaviours and the robot can even cartiif higher levels drop out
As a trade-off and due to the non-existence of a suitabler@mwvient model, it is not
possible for the agent to develop long-term plans. The supson architecture was suc-
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cessfully implemented in many robotic fields e.g. for natigatasks in autonomous
agents.

For these reasons a behaviour-based control has beendappbesecond approach to
BISAM. The architecture is mainly reactive, but with few ptang components. Rhyth-
mic motion is no longer generated by a neuro-oscillator,dmérges from the interplay
of the basic components in even terrain.

Each behaviour component has an input to determine itsaietevrespectively activation
within [0.0; 1.0]. A value of 0.0 deactivates the behaviauhereas a value of 1.0 leads
to maximum influence on the robot. Values in between the médgecan be used to mix
the motor primitives from different behaviours. In doing Hue activation expresses the
relevance of the behaviour respectively the corresponalitigut for the current situation.

After evaluating the current sensor input and after selgcin appropriate motor action,
each behaviour component gives an additional output egimiggsts satisfaction. Here
satisfaction means to what extent the current sensor sjatdsthe desired world state of
the behaviour. This output is called activity and, agaiis ttalue lies within [0.0; 1.0].
Here, a value of 0.0 means that there is nothing to do for #&biour, because its goal
has already been reached. A value of 1.0 means that the behavants to change the
current state with every means it has. Note, that the agtmiist not exceed the behav-
iour’s activation.

All basic behaviours are arranged in hierarchical groughiwia single network. This
model consists of a network of different competences, edalhhich generates motor
output as soon as its specific goal is not met. To merge allthegunotor programs, sup-
plementary knots are added to the network in which conctilrenaviours are combined
by either superposition or prioritisation.

BISAM achieves cyclic statically stable walking for secum®vement in segments of
extremely rough terrain, arbitrary leg step sequence tocovee obstacles. With its reac-
tive control structure, it is further capable dynamicaligide trotting. Rhythmic motion
was no longer generated by neuro-oscillators, but emergesthe interplay of the basic
components in even terrain. Regrettably, BISAM cannotdstgnand thus makes posture
control and stable locomotion even more important.

2.4.3.3. Benefits in both approaches

Both approaches, BISAM and Tekken I, create their own noear dynamics exploiting
the strong interaction of neural system and the environméence autonomous adapta-
tion under changes in the environment (e.g. adaptive walamirregular terrain) and un-
der adjustment of the neural system parameters (e.g. gagition or change of walking
speed) is induced without an internal representation of#s body or of the environment.
Therefore, serious problems such as generating a body iamatan environment model,
autonomous planning, coping with discrepancies betweamnegld and actual motion etc
can be avoided. Unfortunately, none of them is capable ofréeming. For walking on
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terrain of higher degree of irregularity, e.g. with holesldarge obstacles, adaptation
based on vision would be a necessity.

2.4.4. Different approaches to motor primitives

Regarding the conceptual idea of motor primitives, sevetta¢r project, mainly in the
field of imitation learning, can be found that basically wevikh the same concept, but
different representations and/or terminology. In thidiseg we provide a short overview
over an assortment of interesting projects.

2.4.4.1. Constitutional research

Arbib was the first who proposed the idea of movement priregivn literature, this con-
cept also is referred to as movement primitives, motor selsemmotor programs, basis
behaviours or action units [Paine 04, Arbib 81].

Stefan Schaal [Schaal 99] defines movement primitives agwesee of actions that can
accomplish a certain movement goal. He also stressed thertamgze of modular mo-
tor control in form of movement primitives in imitation leang of humanoid robots as
mentioned in section 1.1 on page 3. Herein a movement pviendan be as simple as
an elementary action or implement complete temporal bebasi In that sense, primi-
tives can be formalised as form of control policy which résin a compact state-action
representation where only a few parameters need to be edjimsta specific goal.

Later, he developed the theory of dynamic movement priestfPMP) which are repre-
sented as non-linear differential equations in order tateremooth motions [Schaal 02].
The idea is to employ well-defined mathematical concepth ssattractor equations to
implement the basic behavioural patterns. The DMP’s dtirdandscape can be modified
using statistical learning to match the detailed needsetthrent situation [Schaal 04].
The idea of using non-linear dynamic systems as policiekaaost closely related to
the original idea of motor pattern generators (MPG) in nbimogy. Further they imple-
mented this system of programmable pattern generators omplex anthropomorphic
robot [Schaal 00].

2.4.4.2. Imitation learning

Combining perception and generation of motor primitivesglitime 3D imitation was
achieved by Yasua Kuniyoshi et al [Kuniyoshi 94]. They pregda method where a robot
learns reusable task plans by observing assembly tasksrmed by a human operator.
In doing so, the agent splits up a continuous task into megdminnits. The identification
of those temporal segments is performed by concurrent rebogy processes with active
attention control. For the overall imitation task, the systconsists of three units: seeing,
understanding and doing. This approach is called “learbygvatching”. The action
recogniser relies on an action model, an environment madeka attention stack. The
action model itself is a collection of knots representing tdmporal structure. Currently,
the temporal segments, called “assembly motion”, are chetiaed by qualitative motion
features of the hand and the relative location of hand andcbbjFurther, each partial
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action is characterised by a set of “assembly operations€rid@ng changes or invari-
ants in the environment during the corresponding time se&dask is then composed
of several segments that together cover the whole tempgtahteof an assembly task.
As a basis for recognition, the design has to provide a haaed set of fixed templates
of partial task sequences. Though they use “reusable taskl&dge or plan” instead of
motor primitive, it essentially means the same, excepttti@imovement primitives can
be adapted by parameterising the given templates.

A similar approach was taken by Mataric et al [Mataric 98, Muat02]. Other than
“learning by watching”, complex behaviours are perceivedat only sequences but also
as superposition of basis behaviours. In doing so, thestigegted alternative representa-
tions including convergent vector fields in joint and Cadesspace, impedance control,
interpolated joint-space control and CPG. Furthermorey itngaged in self-acquisition
of primitives on the basis of observing an exemplary setmis movements. The con-
cept was tested on a physics-based humanoid simulationhtw@noid avatars, AIBO
and a number of wheeled robots. Talking about representdflataric speaks of a set of
sensory-motor primitives forming a basis movement vocatyul

Both approaches use fixed behaviours and function in the sfyiirror neurons found
in primates.

2.4.4.3. Self-organisation

Jun Tani et al [Tani 02] started with a localised represemtatf motor primitives which
were self organised in a hierarchical neural network. Lakey switched towards a dis-
tributed representation scheme. Since this model is ctearsed by two levels of for-
ward models, it is called “forwarding forward model”. Eadvél was implemented as
Jordan-type recurrent neural network. Here, behaviowgarceived and generated as
combination of reusable pieces. Those sensory-motorcspatiporal patterns are self-
organised in the lower level forward model. The “control reas” in the higher level are
bi-directional connected to the lower level. By means obpaegtric bias, they are able to
switch between several primitives. With that concept, taklsp accomplished imitation
learning on the basis of those pre-learned primitives, evbiily the upper level neurons
were allowed to adapt. Further, they observed how the ictierabetween the two levels
enables adaptation if the target object is moved so thatleveixiecuting a grasping task,
the agent has to switch between two fixed behaviours in thdlsif the execution.

Later, Rainer W Paine and Jun Tani [Paine 04] deepened thiestof this dynamic adap-
tation process. Using a similar concept, they decided orléwals of continuous time re-
current neural networks. The two levels are connectedreetonally. Again, the higher

level was allowed to switch between pre-learned primitinegsesented in the lower level
network. Both levels were stepwise evolved for tasks ofaasmg complexity. Here a
navigation task to multiple goals in a maze environment veetgeved, if starting from

the same initial position. In both projects, the movememnjives remain unchanged,
once they self-organised in the lower level.
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2.5. Entitlement to this thesis

The prevalent interest of embodied Al and behaviour-baskdtics is to provide insight
into animal/human behaviours by building biologicallypimed robots. This principle is
commonly known as “learning by building”.

Animals, for instance, lie down only in a few particular pasts resulting from the con-
straints of the body. By taking physical interaction betw#e body and the environment
into account, the sensory state of the robot can no longertheaay and thus is sig-
nificantly reduced. Providing a set of meaningful, adaptnetor primitives, which can
be composed into a broad and general movement repertoar,appealing biologically
inspired strategy. Despite the restriction to a distinttdigerse activities can emerge by
means of sequential or linear combination of single priegi

Since trial and error at random is generally not a good gjyafler an agent behaving in
natural environment, structured search and learning isymare suitable to acquire such
higher abilities. Reinforcement learning is a widespreaghns for autonomous agents
to get along in new situation. Making categories in the stgi@ce is a crucial issue for
learning algorithms since the agent faces the problem ofoan@wus state respectively
search space. Hence the designers must find an approprigate wat down the state-
action space. While it is obvious, that the introduction isicdete actions alone reduces
the complexity of a learning task by avoiding online trapegtplanning, another impor-
tant assignment is to further investigate morphologicaglioations on robot control. The
support of the learning progress is consequently an impoigature of a good basic set.

Due to the fact that ecologically well balanced robots regjonly control e.g. for loco-
motion, all the remaining resources can be used to deve@gehabilities, e.g. learning.
Ecological balance is an important design principle foeligent systems and means
finding a balance between the complexity of the given tasptronorphology and the
controller. In classical approaches to robotics, the cexipy of the controller exceeds
that of the others by far. Anyway, it can be reduced by ena@ingaemergent behav-
iours. This can be achieved by exploiting morphologicapenties such as material and
mechanical design of the robot. In section 2.1 on page 9 thd & unburdening the
controller was introduced as morphological computatiomc& redundancy is a neces-
sity to the emergence of interesting new behaviours, thiaiarally a trade-off to cheap
design, which stresses parsimony. MiniDog6M should redhgse principles as close as
possible.

Motor primitives as a parsimonious means of encoding a masiement vocabulary are
very effective for structuring a robot’'s movement. Formanget of fundamental agent-
environment-interaction, they build an elegant modularcept for motor control which
is driven by the kinematical and dynamic constraints of tleansystem and represent
frequently executed moves in a robotic task.

In contrast to other approaches that put forward the deeet@nt of adaptive motor prim-
itives, the example of the frog, which was already mentiandbe introduction, suggests
the use of fixed primitives. The primitives found in its sgiolaord only vary by adapting
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the power with which the motion is carried out to the strerggttihe sensor stimulus. Nev-
ertheless the frog is an adaptive being. Its fixed behaviag£ombined into sequences
or mixed by means of superposition. To follow suit, we de@dainst the use of adaptive
primitives. Further, we decided to use a localised instéadigstributed representation for
the primitives, since the primitives that are used througlias thesis are pre-determined.

It is widely believed, that knowledge and behaviours that @rquired in one environ-
ment cannot be used if the setting changes. Adaptabilitgésiad for the capability of
standing up in different terrain, e.g. with different slspdn order to be able to react
to changing environment, the agent must constantly keepaming. Regretably, many
examples showed that this kind of adaptation takes as lotepasing from scratch. We

contrast this common claim of steady learning: Changingrenmental conditions may

prevent certain behaviours, but new behaviour may come wen i some of the pre-

learned behaviours fail, the robot might still be able tdiffits task by employing another
behaviour. Being equipped with enough behavioural ditgriie robot may still be able
to perform its task after several unsuccessful trials. &toee, it is much more interesting
to investigate the feasibility of the gained knowledge immging environment without
adaptation. Discovering the suitability of a multitude ohtplex sequences for different
morphologies, tasks and environments, this means thecgvastionline adaptation and
still being able to succeed in new situations by exploitisgdvioural diversity.

The intention of this thesis is to systematically investgeé and how the influence of

morphological constraints to motor control makes learrdagier and simpler. The goal
is to provide a methodology to explore how the morphologpralperties contribute to

generating these discrete entities in the continuous sgspace. Such a methodology
needs to investigate how different vocabularies affectabrtural diversity, robustness
and learning progress. Robustness in this context meanth#haehaviours are tolerant
against changes in morphology, environment and posturesftden, guidelines and de-

sign principles for the developement of motor primitivesvadl as the morphologies can
be extracted.

For this purpose, such a methodology has to settle the foltpalaims:

e Primary experiments should reveal the potential of the rdiog’s sensory and lo-
comotion system. The result gained from these experimeiitswild the basis for
the subsequent investigations.

¢ In order to get an appreciation for possible vocabularidgssaset of motor primi-
tives should be extracted out of well known standing up sece®

o To derive quantitative results, abstract, task and platfiodependent measures are
needed to categorise and evaluate single motor primitergge vocabularies and
behavioural diversity.

o Different vocabularies, as well as different morphologied different ground con-
figurations are to be examined.
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In order to finalise this list, we will proceed as follows:

10.

First, the morphological and control concepts of ouraedeplatform will be intro-

duced and subsequently several gaits and a pre-prograntaretingy up motions
and their feasibility of these behaviours on flattish, medand steep slopes will
be elaborated.

Out of these pre-programmed sequences, the first set @i rpomitives will be
extracted.

Further, we will establish a general means to evaluate theegard of the frequen-
cies they assign to the motors. On that basis, several viarasiwill be worked
out, each of which being an assortment of motor primitivegtie vocabularies that
will be investigated throughout this thesis.

In the second stage, MiniDog6M is transferred into sirmoato enable further
experiments with different morphologies which cannot banged effortlessly in
the real world.

On that basis, the morphologies that will be investigatetie course of this thesis
will be selected.

. After that, a general means to compare the behaviouratslty of different tasks

or vocabularies will be established.

In the first row of experiments for the evaluation of ourafoglaries, diverse stand-
ing up sequences will be generated as a trial and error catmof the underlying
motor primitives.

. The second set of experiments addresses the robustngssefsequences on in-

clines.
In the third batch of experiments, Reinforcement Leagymsnengaged.
At the end, the main results of our work will be summed upgether with these

concluding remarks, future assignments that directly hgo&n the framework pre-
sented in this thesis will be elaborated.

The deduction of appropriate measures is independent axperiments. Hence, their
developement can be considered coexistent. The depesdelmieh affect the time plan
of the project can be illustrated as follows:



2.5. Entitlement to this thesis

35

Experiments on:

Behavioural

Diversity

Real world Selection of

Experiments Vocabularies l Guideline

¢ for

Robustness Motor

Transfer into Selection of on Inclines Primitives

In Simulation Morphologies and

Morphology
Learning
—™ Development of abstract measures

The time flow increments from left to right hand side of thepdria. Tasks that are
arranged one below the other can be executed in parallel.aiirbess depict the depen-
dency among them. If two task are dependent and despite oligaed vertically, the

dependency is weakened into influence.

In the next chapter, the first item on the afore mentionedvitoe realised.
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3. Real world experiments

In this chapter, we will give details on the physical confajion and locomotion reper-
toire of MiniDog6M. Then we will provide a description of oexperiments in the real
world which build the basis of our further studies.

3.1. Morphology of MiniDog6M

In this section, MiniDog6M’s mechanical structure, as vealthe choice and placement
of sensors and actuators will be presented.

As seen in Figure 1.1 on page 4, the body is 125 mm long, 73 mra,v&d mm high.
The complete dog weighs 194.9 g. The control area has a baggabiximately 589
mm?, is up to 50 mm high, consists of power switch, accelerat@mser as well as the
interfaces for motors and PC (via RS232) and is applied tddsal, which results in a
significant frontal weight overhead of about 49.7 g.

MiniDog6M has six motors, one for each leg plus two forming #pine, which provide
an approximately semicircular trajectory addressed byesbetween 0 and 255. The
motors in hip and shoulders move the legs, the front spinabnemables the dog to bend
(bend motor) and the hind spinal motor causes a rotationaément of the hind respec-
tive to the front (twist motor). The motors chosen for the Ndiog6M project are S-811
MG servos offering 33 Ncm at a rate of 0.9 at an operating voltage of 6V. Each servo
weighs 19g on 29.82:29.6 mnt. Assembled with hot glue, they form the robot’'s main
body. Sufficient power is supplied by an electric generatar stabilised by an accompa-
nying battery.

Since the centre of mass is relatively high in the originatlelpit should be lowered so
that MiniDog6M can cope with small disturbances withoutifg. With an additional
weight of 5 g attached at each foot, this decisive point iftethitowards the lower head.
The effects can be summarised in stabilisation of locomogase of standing up and an
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increased rotational momentum enabling rolling over obatsk.

Being part of the “running dog project”, MiniDog6M is inspat by anatomical studies
of a canine. In contrast to the four-legged archetypes, &aris designed identically.
Every leg, as shown in Figure 3.1, has one active degree eflér@ controlled by an
independent servomotor (cuboid in the schematic) and ossiyeadegree of freedom
controlled by a spring (lightning-shape in schematic) @mimg upper and lower leg.
The spring constant is 481. A spring-damper system is a canmuxlel approximating
the visco-elastic properties of a muscle. The weight of dgs lis low with 7.8 g, since
the upper is made of a 5 cm long piece of plastic and the lowgcpasists of 5.5 cm of
aluminium. The latter enables MiniDog6M to slip over thegnd very easily thanks to
the low friction sole of its feet.

Figure 3.1.: MiniDog6M’s leg design in photo (left) and soieic (right)
Red: active degree of freedom controlled by a servo motdrdicl)
Green: passive degree of freedom controlled by a springtfligg shape)

The dashed arrows in the schematic indicate the qualitatimeement of those parts of
the leg that are highlighted with the same colour. Despiatidal design and identical
controller interval [0..255], the angular range of frontldnnd legs is uneven because of
unlike attachment to the correspondig servo. Additiondtlg scope of the left front leg is
limited more than the other motors due to morphologicakiegins. The angular range
of each physical unit is listed in Table 3.1 on the next page.

So far the sensory system is limited to a tri-axial capagiiecelerometer located within
the control area of MiniDogéM'’s head. The sensor elemensists of a fixed and a
flexible electrode. Due to mass inertia, the distance betwlee two electrodes changes
proportionally to the acceleration force acting on the fxkelectrode plate. This change
in the plates’ relative position results in the proportitnehange of the static capacity
between the electrodes. This deformation is detected bypactdar on the opposing
split electrode. Following this simple principle is podsitb measure static and dynamic
acceleration on all three axis within a single small, cost@mergy efficient structure. We
employ the Star Micronics ACA 302 sensor [Micronics 05], afhis shown in Figure 3.2
on the facing page, with built-in amplifiers. The sensor ispied with 2.7 to 5.5 volts
DC. More sensors are planned.
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Unit Angular Range
Head bend down: 65 bend up: 62
twist right: 72.5 twist left: 73
Front right upper leq forward: 5F backward: 108

Hind right upper leg| forward: 5% backward: 104.5

Front left upper leg| forward: 34.5 backward: 59

Hind left upperleg | forward: 65 backward: 92.5
Lower legs rest position: 60 | max deflection: 90

Table 3.1.: Angular range physical units driven by servopoing
Note that there is an imbalance between left and right hagsl le

Figure 3.2.: Acceleration sensor employed in MiniDog6
The sensor element consists of a fixed and a flexible electvbdd makes it
possible to measure static and dynamic acceleration ohrak taxes within
a single small, cost and energy efficient structure.

This simple morphology with its minimal mechanical and &legic complexity increases
the reliability and robustness by significantly reducing thajor sources of failure while
lowering the cost of the platform.

In the next section, MiniDog6M’s locomotion repertoire, ialn arises from its simple
sinusoidal control, will be presented.

3.2. Locomotion repertoire of MiniDog6M

Being part of the “running dog project”, MiniDog6M is capaldf more gaits than just
running. They will be investigated in this section.

As MiniDog6M'’s locomotion is controlled by a simple sinudal controller equation as
introduced above, everything we familiarised for the lootion concept of the “running

dog project” is also true for MiniDog6M. Further, we enableat only running behav-

iour, but also trotting and backing up. During running, frand hind legs are moved in
parallel, as are left and right hand legs during trottingttBgaits can be used for forward
and backward locomotion.
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The hopping motion is provided by the servos in shoulder apsl Wwhich move the legs
back and forth. Forward movement emerges in combinatioh ieiv friction soles of
feet and one spring per leg which, as passive joint, expamdle@ntracts uncontrollably.
For optimal support of MiniDog6M'’s front and hind legs, a pealelay ofr is preferred.
Thereby, the evasion of one variable, namely phase delayro@s pleasant side effect
making the control even more parsimonious. The resultingrotier equation for each
servo is as follows:

Front/right hand legsM otorvalue = A - sin(w - f) + of fset Front (3.1)
Hind/left hand legsM otorvalue = A - (—sin(w - f)) 4+ of fsetHind (3.2)

Herew is an integer variable increased in each controller stepiritidlised with zero
when the robot dog starts moving. Whether a gait is used fardfal and backward loco-
motion purely depends on the offset. If the offset shiftsdetre of the motion towards
the front, the robot will be pushed in that direction. Thifeet also holds for backward
motion. Regretably, running backwards is unstable, siatter just a few steps, the ba-
sic version of MiniDog6M cants over the small low frictionete This misachievement
is based on the disadvantageous location of the centre of.n&s without additional
weights attached to the hind of the robot, the way of fast ivackp is only stable in
simulation.

In order to represent the robot’s locomotion repertoire dened the enumeration data
typeGai ts.

Gaits {Still, Trotting, BackUp, Running FastBack};
I ndex 0 1 2 3 4

We collected data from the accelerometer to see if it is pts$d discriminate different
gaits and/or ground friction. In other words, if the accatem values reflect the fact that
trotting is slower than running, that backwards means megand forward locomotion
positive acceleration or that the same gait might be fastground with low friction than
it is on ground with high friction. The gained data of the wlet gaits are captured over
200 means of 10 sensor values respectively. The resultste in Table 3.2 on the next
page for a rough surface with high friction and for slippeaydhground.

Regarding the expectation, we can see the tendency thaadbraxis backing up is less
accelerated than trotting and that running has the higleesteration. Further we find the
tendency that all gaits are faster on low friction surfacefdtunately these tendencies
are insignificant regarding the extension of the whole irger

One of the most surprising facts is that locomotion does retlrconstant servo control,
but, thanks to the springs, manages to create a continuousmamt out of discrete angles
and control operating at coarse-grained time steps. Otlteniotion approaches need a
controller period significantly shorter than the periodeh@rsually in the range of only
few milliseconds instead of here 1s). The trick is that thensic dynamics of our model
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Gait 0 1 2 3 Gait 0 1 2 3
AXis O: AXis 0:
Minimum: -2 | -127| -124 | -128 | | Minimum: -2 | -128| -128 | -128
Expectation:| 13 | 22 18 | 39 Expectation:| 13| 22 | 26 | 39
Maximum: | 35| 124 | 125 | 127 | | Maximum: | 35| 126 | 122 | 127
AXxis 1: AXxis 1:
Minimum: 15| -120| -120| -128 | | Minimum: 15| -123| -41 | -128
Expectation:{ 30| 36 | 26 | 44 Expectation:) 30| 38 | 36 | 53
Maximum: | 49| 126 | 118 | 126 | | Maximum: | 49| 123 | 127 | 127
AXis 2: AXis 2:
Minimum: 14| -43 | -67 | -128 || Minimum: 14 | -116| -38 | -128
Expectation:} 29| 33 | 22 | 43 Expectation:} 29| 35 | 32 | 52
Maximum: | 45| 124 | 116 | 126 | | Maximum: | 45| 114 | 119 | 127

Table 3.2.: Sensor data of the accelerometer of differaig gad different surface condi-
tion
All gaits were tested on a rough surface with high frictioeftl and slippery
hard ground (right)
The excepted acceleration is lower for backing up than ibidrotting. Fur-
ther the robot is less accelerated during trotting thanduisng running. The
excepted acceleration is higher on low friction than on Higgttion surface.
Gaits and surface cannot be discriminated on the basis eteaation since
these tendencies are insignificant regarding the extemgitdme whole inter-
val.

take care of the rest. This cohesion is qualitatively pediun Figure 3.3 on the following
page where the black line denotes the robot’s displacememt its initial position over
time. The red arrows record the sparse motor commands sethiebgontroller. The
dashed line marks the intended leg trajectory.

We will not go into detail on the subject of gaits and speedai@ns, since the main focus
of the case study lies on standing up. First experiments isnatitl be described in the
next section.

3.3. Controller-based standing-up approach

To accomplish the task of standing up behaviour from anyitpmstures, we define two
subtasks, namely state recognition and standing up. Howssitication of the robot’s

position is conducted, is described in the first subsecfidgren our experimental results
derived from pre-programmed sequences are presentedlyFinaresulting controller is

explained.

3.3.1. Classifying the robot’s position

First, as a trigger for the standing up behaviour, the robagtrmecognise whether it is
standing or lying down. Furthermore, since it is not posstblstand up using the same
behaviour sequence from all positions, itis in our intete$ind out on which side it fell.
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A Motor
Displacement | Output

> Time

Figure 3.3.: Relationship between motor output (red arj@msg the robot dog’s displace-
ment from its initial position over time (black line). Thddk is that the
intrinsic dynamics of our model take over in the meantimeJeen the motor
outputs.

A classification of the basic positions can be achieved bygusot more than the inexact
values provided by the acceleration sensor. These maitiggusare standingStand,
lying on the left side I(eff), lying on the right side Righ?), lying on the back Back),
standing on the headHgéad and sitting Git). As the sensor is located in the head, these
positions only refer to the posture of the head.

We define an enumeration data typ@si t i ons to represent those basic orthogonal po-
sitions.

Positions {Stand, Left, Right, Back Head Sit};
| ndex 0 1 2 3 4 5

In order to achieve a reliable position classification ov@d theans of 10 sensor values
respectively were recorded. The test data is shown in TaBlerBpage 44 and illustrated
in Figure 3.4 on the facing page. For each axis the lines septethe interval for one
of the extreme positions. They are sorted top down as foll&tand(black), Left (light
blue),Right(red),Back(green)Head(dark blue) Sit (orange).

For all initial positions the expectation is (almost) in tinéddle of the interval. Looking
at the extention of the intervals, it becomes obvious thatamot discriminate any in-
clined position between the extremes or different grourgles since the intervals of the
orthogonal positions are too close to each other. So if a paeise resolution of the
position is needed an extra gyroskop must be acquired.

The classification of these positions is performed by a fixeesging algorithm based on
expectations gained from the test data mapped in the six pasitions.

The estimation is based on the difference between the aataaleration values and the
expectation of every position. The least difference is maée first guess and the next
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Figure 3.4.: Range of averages of ten accelerometer vaksp@etive limiting values are
listed in Table 3.2).
Inclined position between the orthogonal positions cateotliscriminated,
since the intervals of the orthogonal positions are tooectosach other. For
all initial positions the expectation is (almost) in the wailiel of the interval.

higher as second guess. If either estimates head postieguessing process needs to
be refined. In this second step, we compare the current sdatowith the expectation
of the acceleration axis with the most unlike expectatiarttie positions being involved.

This classification of the head’s position is carried out ly proceduresensePosi -

t i on. With the parametest abl e, a programmer can choose whether the classification
is based upon the very lagit(abl e = f al se) or the average of the last ten acceler-
ator measurementstiabl e = true). The procedure returns the resulting position.
The overall guessing algorithm is listed in Algorithm 1 orgpa8 below.

As every robot that relies on sensor information, MiniDog6Nst face the problem of
category errors. In the case of standing up, this is not a pesdlem, since the con-
sequences are not too severe. If MiniDog6M is running andienly assumes a lying
position, trying to stand up would cause the robot dog todealn. If the robot is lying
down, but estimates the wrong position, it either startsimm (if Standis assumed) or
tries to stand up and will most probably fail. The result ither case is that the robot
dog is still lying at the end. Consequently, the robot hagymhce more. Moreover,
there is no risk for the physical structure of the robot, siits primitives are designed to
prevent harmful postures. The classification results bagetie averages of the last ten
accelerometer values is shown in Table 3.4 on the followiagepbelow. The rows are
labeled with the actual position and the columns with the@reged position. Each cell
contains the probability of the corresponding pairs. Théwrdagonal denotes the prob-
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Positions 0| 1 2 3 4 5
AXis O:
Minimum: 2|13 |-39| 4 ]26| 5
Expectation:| 13| 51 | -23| 12| 3 | 23
Maximum: | 35| 67 | -3 | 29 | 30 | 46
AXxis 1:
Minimum: 15|-11|-14 | -48 | -13| -7
Expectation:) 30| 2 | -3 |-32| 4 | 7
Maximum: | 49| 16 | 13 | -14| 25 | 26
AXis 2:
Minimum: 14| -18| -21| -53 | -22 | -12
Expectation:} 29| -2 | -8 |-38| O 3
Maximum: | 45| 14 | 9 |-18| 22 | 25

Table 3.3.: Sensor data of the accelerometer in basic posifinterval is visualised in
Figure 3.4).
Inclined position between the orthogonal positions carmeotiscriminated,
since the intervals of the orthogonal positions are tooectoseach other. For
all initial positions the expectation is (almost) in the wfielof the interval.

abilities for correct classification, the others signife throbabilities for the respective
misclassifications.

Pegt 0 1 2 3 4 5
Pact
0 0.980| 0.000| 0.000| 0.000| 0.015| 0.005
0.000| 1.000| 0.000| 0.000| 0.000| 0.000
0.000| 0.000| 0.980| 0.000| 0.020| 0.000
0.000| 0.000| 0.000| 1.000| 0.000| 0.000
0.029| 0.201| 0.000| 0.000| 0.601| 0.169
0.023| 0.013| 0.000| 0.000| 0.134| 0.830

A BW DN

Table 3.4.: Classification results on test data
P,.: actual position (rows)
P, estimated position (columns)
The main diagonal denotes the probabilities for corredsifecation, the oth-
ers signify the probabilities for the respective misclasaiions.
If head position is estimated, the guessing process nedwusrifined.

It is understood that apart from the position of the headptistion of the motors is also
of interest. Since they cannot be read directly from theaeran efferent copy of the
motor command is stored in a global variable (though it isenity not needed).

The next subsection describes the standing up trajectouesl in first pre-programmed
experiments.
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3.3.2. Trajectories of standing up

During a variety of pre-programmed experiments, seveealdihg up trajectories were
found. A model of those trajectories is illustrated in Fig®.6 on page 49. The dots
marked with the basic positions represent the possiblialistiates.

The red trajectories indicate dynamic motions exploitimghody properties. In the upper
case, inertia is used to swing from right to left by rollingeown the back. In the lower
example, gravity pulls the dog down on its belly.

The dashed arrow marks gradual movement which means imiragléour sub-goal po-
sitions between the current and mid position. The reasontimsyhumble way to slow
down the motion was considered, is that the robot dog camtsamyain if the legs return
directly this fast. This reduction is necessary only in 8pecial case because the uneven
angular range of the legs (and thus unequal starting pgntsjuce unequal momentums
that do not outweigh each other. Reducing speed also meamsthing the momentums
generated during the move so that they can be absorbed byrenits of the body.

The afore mentioned imbalance of motor range is the reasdrstanding up from mir-
rored positions does not result in mirrored movements. JTfarsnstance, a successful
sequence for standing up from the left cannot be transformtedan equally successful
sequence for the right. The irregular diagram results froirorphological constraint.

In many cases, the directionality of the arrows can be rdyibat, due to asymetrical
dynamics resulting from imbalanced motor range, this do¢sold for all of them. Thus
rolling over on the back from left to right hand side is jusirapossible as the reversion
of the red arrows.

Anyhow, the selected set of trajectories, as shown in Fi§ueon page 49, is certainly
incomplete, because neither static trajectories nordi@jes emerging from the dynamic
interchange (red transitions) can be fully overviewed.

The controller that implements these results is describdaa next subsection.

3.3.3. Controller algorithm

For our locomotion task we decided on a simple cyclic condtctegy. The dog runs
until it stumbles and falls. Then it stops the running motistands up and resumes its
way.

At the beginning - after setting up the serial communicatitive dog is initialised by set-
ting all motors to mid position. After sensing the posititite respective action is carried
out. At the moment, this action is “running” as long as theatotemains in an upright
position or “standing up” otherwise.

A classification of the position on the raw accelerometeutisgakes place after each
controller step. To take misclassification into accourd,rtimning motion is only stopped
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after perceiving an assumed position different fré@@tend for more thant r i gger nax
times.

Since fixed behaviours such as the standing up trajectorlegure 3.6 on page 49 require
a predefined starting point, the robot must adopt a distiostyve before “standing up” is
called. So first of all the robot must stop the hopping behavand bring the servos to
the initial position, if MiniDog6M'’s sensors state thatstlying down. After stopping the
motion, a more reliable classification on the average of teelarometer measurements is
performed. The result triggers the appropriate routinestEnding up from the respective
posture or running ifStand is assumed (due to current or earlier misclassification).

To assure that each motor’s goal position is reached, ewsrlydller signal (except dur-
ing running and trotting) is repeat®dinTi cks times. A subsequent guess of the new
position proves success respectively failure. MeasuBtand the robot will resume his
way, else another try is initiated from the current position

As already mentioned, there are different solutions for tnebshe initial positions. At
present, the next step among several possibilities is chaseording to preset probabil-
ities. Therefore the robot will eventually be able to stapdeuven if a distinct movement
is blocked (for instance by an object), since after sevdtah#gpts, it will end up in a be-
haviour that does not need to carry out the impracticableemov

The resulting algorithm is listed in Algorithm 2 on page 50dve

The next section gives an insight into the robustness of @utisns in inclined environ-
ment.

3.4. Standing up in a sloped environment

In this section, the pre-programmed behaviours are testéusir capability to be tolerant
against minor, medium and steep inclinations.

First vital experiments with different ground angles shdwet the robot dog can still get
up in territories with relatively steep incline, but onlypf particular postures. Anyhow,
the selected set of trajectories, as shown in Figure 3.6 ga #8, is certainly incomplete,
because neither static trajectories nor trajectories @mgfrom the dynamic interchange
(red transitions) can be fully overviewed. Whether the qupdd can stand up or not
depends purely on the position of the head. Due to its heasg hed the high centre
of mass, the robot fails even in flattish terrain if being inisadvantageous posture. We
made efforts examining eight designated initial positionsombination with three dif-
ferent ground angles. The qualitative results of ten taaésshown in Figure 3.5 on the
facing page. Here '+ means that each of our test succeeds® im case of - and
with alternating success if marked with '0’.Anyhow, theesegkd set of trajectories, as
shown in Figure 3.6 on page 49, is certainly incomplete, beeaeither static trajecto-
ries nor trajectories emerging from the dynamic intercleafngd transitions) can be fully
overviewed.
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5 5

8.28° +
20.9¢ - +
37.37° + 0 - +
8.28¢ + 0 - -
20.9¢ + + - -
37.37° + + - -

Figure 3.5.: Successful standing up with different groungles in ten trials.
Success or not heavily depends on position of the head.
+: Each test succeeded
-: No test succeeded
0: Some tests succeeded

Unfortunately, not all positions and ground angles can biketbawith '+'. Partly succeed-
ing combinations always arose from too high momentums winisbme cases overthrew
the quadruped after standing up successfully. In thesaadpases, slower movements
might help, but regarding combinations that always faigwadr centre of mass or a higher
behavioural diversity would be much more promising.

In the next chapter, we will work out an assortment of motemgives and further es-
tablish a general means to evaluate them in regard of thedremes they assign to the
motors.
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Algorithm 1 Position classification witsensePosi ti on

st abl e: Parameterf(al se: classification is based upon the latéstue: classification
is based upon the average of the last ten sensor values).

1€{0, 1, 2}: Index of acceleration axisef0..5}: Position index

E(axis[i] for j): expectation of axis i for position |

1. if (stable)
initialise average[0], average[l] and average[ 2]
with average of next ten accel eroneter val ues;
2. else
initialise average[ 0], average[l] and average[ 2]
wi th next accel eroneter val ues;
3. for all j
count[j] = > ., , abs(average[i]- E(axis[i]
for j))
First_guess = k with count[Kk] = m ng count[j]
5. Second _guess = n wth
count[K] < count[n] < m Ngjmcount[j]
6. if (First_guess == Head)
i f (Second_guess == Stand && count[ St and] ==0)
for i =1..2
tenp = abs(E(axis[i] for Head) - averagel[i]);
tenp2 = abs(E(axis[i] for Stand)- average[i]);
if (tenp < tenp2)
i ndi cation for Stand,
el se
i ndi cation for Head;
if (nmore indications for Stand)
First_guess = Stand
if (Second_guess == Left && count[Left]==
&% average[1l] < critical value)
First _guess = Left
if (Second_guess == Left && count[Left]==
&% for all i: average[i] < critical value)
Fi rst_guess = Back

B

7. if (First_guess == Head && Second _guess == Sit
|| vice versa)
if (abs(average[0]- E(axis[0] for Sit))
< abs(average[0]- E(axis[0] for Head)))
First _guess = Sit
8. if (First_guess == Head && Second _guess == Ri ght
|| vice versa)
if (abs(average[O0]- E(axis[0] for Right))
< abs(average[ 0] - E(axis[0] for Head))
First _guess = Right
9. return First_guess;
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49

Lefiep Back# Head Right g & 5it

Figure 3.6.: Standing up trajectories found
This set was found during a variety of pre-programmed erpanmis, but is
certainly far beyond completeness.
Dots: Possible initial states
Red trajectories: Dynamic motions exploiting the body @mies
Dashed arrows: Gradual movement
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Algorithm 2 Standing up controller
Initialise random nunber generator
Initialise probabilities to select one trajectory
out of several possibilities

Initialise communication
Initialise MniDogbM (set all notors to position 128)
VWi |l e ! (Program cancel ed) {

Position = sensePosition(true);

if (Position == Stand)

do
run();
while ((stop < triggermax) && ! (Program cancel ed));
Git = Still;
el se
swtch (Position) {
case Right:
if (probability < marginal val ue)
trigger one trajectory;
el se
trigger another;
br eak;
case Back
if (probability < marginal val ue)
trigger one trajectory;
el se
trigger another;
br eak;
case Left:
if (probability < marginal val ue)
trigger one trajectory;
el se
trigger another;
br eak;
case Head:
trigger standi ng up;
br eak;
case Sit:
trigger standing up;
br eak;
defaul t:
run();
}

}

Cl ose conmuni cati on




4. Generation and evaluation of motor
primitives

In this section, we will derive a first set of motor primitivasd establish an abstract task
and platform independent measure to categorise and egdhen. In this context, six
exemplary vocabularies will be nominated for further stsdi

4.1. Deriving a first vocabulary

In this section, a first set of motor primitives which is dexdvfromth real world experi-
ment will be worked out.

Analysing the pre-programmed standing up sequences, wéhill of them basically
consist of nine distinct sets of motor positions as shownahl& 4.1 on the following
page. Each line represents one motor primitive each of wtachbe defined by the goal
positions of all motors. With goal position we mean the vesgipon where a motor ends
up after carrying out the current motor primitive. A valuezefo denotes middle position.
The 'max/min’ notation refers to frontmost/backmost regpely rightmost/leftmost mo-
tor position. In ODE, these parameters are definetPas anHi St op/dPar anlLoSt op
for each motor individually. 2’ designates “Don’t care”, which means that the respec-
tive motor is not considered in this motor primitive. “Dorare” can be thought of as
a special stop symbol which causes a motor to remain in itectposition. Therefore,
the resulting posture is no longer determined only by theeturmotor primitive. The
position of the unspecified motors depends on the directgqoesssor(s) of the currently
executed primitive. This means that their position depasdshe last motor primitive
which explicitly specified and set these motors in the pashsgquently, the current mo-
tor positions are the result of mixing up two or more motonptives. Thus the recent
history of selected components must be taken into accowgsttthe current angles of all
six motors.

First of all, we have to adapt the original motor primitivestthe principle of sinusoidal
control. Therefore, the parameter motorposition is stugstil by frequency, amplitude



4. Generation and evaluation of motor primitives

FrontLeft | FrontRight| HindLeft | HindRight| Bend Twist
Init 0 0 0 0 0 0
Bend x x x x max/min x
Twist x x x x x max/min
Legs Equal | max/min | max/min | max/min| max/min 0 0
Legs Oppos| max/min | min/max | max/min| min/max 0 0

Table 4.1.: Set of motor positions defining each motor primit
+/- . frontmost / backmost respectively rightmost / leftiim®tor position
x: Don’t care

and offset. As all other components, excBoin,define offset as zero and amplitude as
maximum motor amplitude, only the frequency discrimindbesrespective component.
Since the duration is also identical for all our primitividee goal position purely depends
on the frequency. Hence if different motors operate at timeskequency, their goal
position is equaland the corresponding legs move in parallel. Availablelfesggies are
frun, 0 @nd+ f where

1

f= NumTicks’

(4.1)

so that the leg swings between maximum and zero positiomglune action period.
Since, sinus is an odd function, it only depends on the sigth@fcorresponding fre-
guency, whether a motor ends up in minimum or maximum pasitichis cohesion can
be expressed as follows:

sin(f-t) = —sin(—f -t) & —sin(f -t) =sin(—f - t) where — — < f < (4.2)

b |
b |

As a consequence, the legs swing forward if 0 and backward iff < 0. For f = 0 the
leg return to mid position. The newly derived motor primésvare listed in Table 4.2 on
the next page.

On that basis, MiniDog6M should be capable of finding progeugnces on its own. In
the following, “frequency” and “goal position” are used syrymously.

The next section elaborates a criterion to rate motor piuestas well as entire vocabu-
laries.

4.2. Evaluation of vocabularies

In this section, we establish a general means to assesginalivnotor primitives and sets
of these by examining the symmetry and flexibility of each porment. The meaning of
symmetry and flexibility will be elaborated in the following

1The term “equal” instead of “identical” is used on purposece maximum respectively minimum motor
angle has the same quality for all motors, but does not refextately the same value.
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FrontLeft | FrontRight| HindLeft | HindRight | Bend| Twist

Run f Run f Run f Run f Run 0 0
Init 0 0 0 0 0 0

BendO T x x x x max/min
Bendl max/min | max/min | max/min| max/min 0 0

TwistO x x x x x —f

Twistl x x x x x f
LegsEqualO —f —f —f —f 0 0
LegsEquall f +f f f 0 0
LegsOpposite( f —f f —f 0 0
LegsOppositel —f +f —f f 0 0

4.2.1. Flexibility-Index

Table 4.2.: Adapted motor primitives for sinusoidal cohtro

Using the term flexibility as the antonym of stiffness implilat motor primitives bear
potential for adaptation. In this sense, we adapt motoripvies by introducing the afore
mentioned “Don’t care” symbol. In this connotation, the mygary vocabularies can be
divided into two groups, A and B. Motor primitives in group Mays specify each mo-
tor position, whereas group B allows the just specified tyjpencertainty. To make this
unambiguous let us construct an example.

Let 1..5 be motor primitives of type A. Here +/- specifies thaxmmal/minimal motor

angle.

1. - - -+
2.+ + + + -
3+ -+ - -
4. - - + + -
5 + 4+ + + +

Then the goal postutémplied by the following action sequences is always the same

WOk R R

a b~ DN
01w
w b

o1 o1
L
+ + + + +

+ + + + +
+ + + + +

+ + + + +

+ + + + +
+ + + + +

P e

1L | L

Ot Ot Ot Ot Ot
o

2To be precise that is the posture specified by motor primiaes this is the common finish of all se-

quences.
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Considering group B exemplary motor primitives might loskfallows:

1. » » - - + «x

2.+ + + + x +

3 + z + - z

4: + + + + + +

5 - -z x - -

wherez designates stop/Don’t-Care.

4 1 5 — - - - - - -
4 5 — - -+ + - -
4 3 5 - - = + - - -

Other than the example of type A, each sequence ends up ifeeedif posture.

To honour this uncertainty, we introduce a special Fleribindex Flz that represents
the ratio between the actual amount and the theoreticaliyrman of Don’t-Care terms.

actual amount of:
Flz = (4.3)
max amount of

Note, that the number of Don’t-Care terms in single motamtive lies between 0 and 6,
but the mean of nine different primitives cannot exceed aimarm of 5.11.

In contrast to other architectures, that have to deal wititaaent behaviours nominated
by different behaviours or control levels (as BISAM), MimB6M only enables the se-
lection of one action sequence or primitive. The combimatbmotor primitives result
as just explained through Don’t-Care terms. Consequehiycurrently selected primi-
tive can only be mixed with primitives selected in the neast@and not with primitives
selected by concurrent behaviours. The reason for thigvitbsn the lack of coexistence.
In the current version of MiniDog6M, we consider only sequedrand not parallel be-
haviours, namely running and standing up. For now, it isezasi stick to our simple
assignment since we want to evaluate the usability of vdeaies for a given task.

How primitives that serve concurrent duties can be mergeathieve the best possible
robot performance heavily depends on the semantics of tloellated behaviours and is
therefore not considered here.

4.2.2. Coherence-Index

A second criterion for action primitives is its inner coagbn respectively homogenity of
a posture. Herefore we define the state of all motors in midipass root posture (motor
primitive: init). The similarity to this root posture and the symmetry of anguositions is
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expressed by the Coherence-Ind&xwhich is elaborated in the followirig

First, we divide the motors in “clusters of interest” attrilmg the fact that certain motors
serve different purposes regarding their position anccatffe direction within the robot.
For MiniDog6M we identify three groups - namely leg motorgnd motor and twist
motor.

As bend and twist motors build a class of their own, their gumagition needs to be com-
pared to the root posture only. Consequently, mid posisgudged with correlation 1,
whereas each motor finding itself in minimal and maximal matagle has correlation
0. Don’t-Care is estimated with 0.33, since the probabtlityeach 0O is one third. This
leads us to the following spinal Coherence-Index valugéedigh Table 4.3. “+/-” denotes
minimum or maximum angle, “0” stands for mid position and Signifies Don’t-Care.

Bend/Twist +/- X 0.0
Co(Bend/Twist) 0.0 0.33 1.0

Spine Bend +/- X +/- x +/- 0.0 X 0.0 0.0
Twist +- 4 X x 0.0 +/- 0.0 X 0.0
Co(Spine) 0.0 0.165 0.165 0.33 0.5 0.5 0.665 0.665 1.0

Table 4.3.: Coherence-IndéXo(..) for spinal motors
0: mid position
+/-: minimum or maximum angle
x: Don't-Care

Since the legs’ group contains more than one motor, thigaseent is not enough to
criticise the combination of motor angles. Hence, we reglaisicase of one motor per
group as special case and extend our measure for groups wriththran one motor. In

doing so, we regard symmetry the primary criterion and misitpn as secondary one.
Symmetry in this connotation denotes parallel movementanitf hind, left and/or right

hand legs.

For our quadruped, we only distinguish four basic categmfesymmetry. Either of these
is of equal quality. These categories, a detailed coherealce and probability distrib-
ution for a single motor primitive can be found in Table 4.4tba next page. Here '0’
stands for mid position,x” allows each angle and ™ stands for minimum or maximum.
The circle denotes parallel movement. Note that the orilemt@f the robot is not given,
so the head may be set on either side. Hence an encircled pegisacan be deemed front,
hind, left or right hand, without loss of generality.

The main categories are subdivided with distance to midtiposiwhich means that we
additionally increase the Coherence-Index if the parédigs are in mid position. Hav-
ing to consider parallelism, the probability distributiftum Don’t-Care in the leg motors’
group is much more complex than for the spine.

3In general, the root posture can also be starting posturaghmsture or any other posture which is of
particular interest.
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00
Main category
() 8¢ |k
Sub category 00 ’ X

Co(legs) | 1.0 | 0.833] 0.667| 0.5 | 0.333] 0.167| O
probability | 0.01| 0.03| 0.1 | 0.05| 0.22 | 0.38 | 0.21

co
oo
oo
oo

X X
X X

Table 4.4.: Coherence index and probability distributiondach categories of symmetry
of the legs
“0”: mid position
“x": allows each angle
¥’ minimum or maximum angle
The circle denotes parallel movement of encircled legs.dHeay be attached
on either side

It is understood that this general probability distribatroust be concretised in reference
to the actual vocabulary.

Merging the Coherence-Index of spine and legs, we weighttineesponding values in
ratio of the number of motors. Just as we did for the spine.

1

Niotal

. Z Co(group) - gy (4.4)

all groups

Co(motor primitive) =

with n,.; being the number of motors amg,,, the number of motors in the group.

In our case study, this means

Co(bend) + Co(twist) + 4 - Co(legs)
6

~ 2-Co(spine) +4-Co(legs)

a 6

Co(motor primitive) =

(4.5)

The Coherence-Index of an entire vocabulary as set of moimitjves is defined as:

Co(motor primitive)

Zall motor primitives (4 6)

max

Co(vocabulary) =

with max being the theoretical maximum of accumulated coherencé# pfianitives.

The different sets of motor primitives that will be discusse our ongoing experiments
are nominated and evaluated in the next section.
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4.3. Choice of further vocabularies

As we cannot evaluate all possible vocabularies, six exam@ets were chosen in this
section to be investigated in this thesis.

We decided on three sets belonging to group A and three tqpgBohey are listed in
Appendix B (group A in section B.1, group B in section B.2). vi@lusly, Runmust be
part of all of them. We stick to a total of ten actions, so thate@an compare how the
selected primitives influence behavioural diversity, isthess and learning progress. It
is understood that using less actions will automaticallgeterate the learning progress
and most likely reduce the behavioural diversity. Thus ile ef a distinct vocabulary
is considered a trade-off between fast learning suitablesi@ world online learning and
maximum behavioural diversity.

The vocabularies partly overlap in order to investigate Hussignificance of single com-
ponents will change in dependency of the accompanying pviesi To overview the ef-
fect of similar vocabularies, one with and the other withban't-Care, the sets can be
paired as follows: 1 and 4, 2 and 5, 3 and 6. The original voeapthat was worked out
in section 4.1 is number 4.

The Flexibility-Index and the Coherence-Index should dsocalculated for each task
individually. As the ten primitives can be divided into twoogps, namely locomotion
(Run)and standing up (1-9), the subsequent tables only congsatetiag up. The analysis
of the vocabularies is listed in table 4.5, and the individating of single primitives in
table 4.6 on the next page.

Vocabulary| Flx | Co
Group A 1 0.00| 0.92
0.00| 0.86
0.00| 0.68
0.43] 0.78
0.24| 0.74
0.20| 0.59

Group B

OO0k WN

Table 4.5.: Coherence-Index and Flexibility-Index of Vogiaries

In order to enable further experiments with different mariplgies, we will proceed with
a simulated version of MiniDog6M. Its implementation as haslthe simulation platform
is introduced in the subsequent chapter.
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1 2 3 5

Co Flx| Co Flz| Co Flx| Co Flx| Co Flx| Co Flx
1100 0 |079 0 |0712 O |100 O |079 O 0712 O
21093 0 |/064 O0|071 O0 028 83064 O |0712 O
3/093 0 071 O |029 O [028 83|042 0.67/029 O
41093 0 (093 0 |021 0 |0.28 83|055 083021 oO
5/093 0 071 O |093 O0 (028 83071 0 |0.25 0.83
6/086 0|08 O0|050 O 086 O |08 0 |050 O
7,08 0 |100 O |086 O 086 O |100 O |0.22 0.67
8/057 O |057 O |08 O0|057 0 ]057 O |057 O
9|/057 0 |093 O |057 O |057 0 |041 033/086 O

Table 4.6.: Coherence-Index and Flexibility-Index of eawttor primitive (first column)

of all vocabularies (first line)

A clear distinction can be seen between group A with: = 0 and Group B

with Flz > 0.




5. Virtual MiniDog6M for experiments
In Simulation

Since we plan to investigate various vocabularies in coatimn with different morpholo-

gies which cannot be changed effortlessly in the real wavkeltransferred MiniDog6M

into a simulated environment. The first section introducpataic library used for phys-

ically realistic simulation throughout our further stusliefhe model of MiniDog6M and

the necessary changes of the controller are specified aftéswrinally, the morphologies
that will be investigated in the course of this thesis arecteb.

5.1. Simulation with Open Dynamics Engine

In this section, the simulation platform for our experinsewill be presented.

MiniDog6M was simulated in a physically realistic enviroant with the help of the Open
Dynamics Engine (ODE), which is a free, industrial qualit#ibrary for simulating ar-
ticulated rigid body dynamics [Smith 04]. Since it is fastxible and robust, with built-in
collision detection, it is a comfortable way to simulate nmgyvobjects, such as legged
creatures, in a virtual reality environment. In contrastrtany other tools using only
springy contacts of objects, ODE additionally supportsiteantacts by declaring special
non-penetration constraints for collision. Hereby spaatistability are emphasised over
physical accuracy.

In ODE agents and objects must be defined as articulatedwstesavhich consist of rigid
bodies of various shapes (box, sphere, ray, triangular mesaépped cylinder) connected
with joints of various types (ball-and-socket, hinge, sfichinge-2, fixed, angular motor,
universal).

Each body is determined by constant and dynamic propefdiesstant properties are its
point of reference which is settled on the position of theti@eaf mass, its total mass and
its inertia matrix that describes how the body’s mass igibisted around its centre. A
body’s motion is described as the dynamic properties ofatstf reference, namely the
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position vector, the orientation, the linear and anguldocity vector. The orientation is
thereby represented either as quaternion or a rotationxnatr

Each joint is determined by the position of its anchor and mlver of parameters con-
trolling its geometry. Since all these properties are irahgjent of the bodies they are
attached to, it is possible for the bodies to be in positiohen the joint constraints are
not met.

Often the user is to blame for such a “joint error” by setting position/orientation of one
body without correctly setting the position/orientatidritee other body, but this can also
happen due to numerical errors. During the simulation, doumerrors can accumulate so
that bodies drift apart. This drift can be reduced by settivegError Reduction Parameter
ERP, avalue between 0 and 1. The author recommends t6Bét = 0.1...0.8. The
defaultis 0.2.

Another important parameter to achieve fault toleranceoiss@raint Force Mixing'F' M .

A positive value ofC F' M takes the system away from any singularity and improves the
factoriser accuracy by allowing the original constraimtthroduces the constraint force to
be violated by an amount proportional@ M times the restoring force that is needed to
enforce the constraint. In other words the constraint vélsbftened aé’F' M increases.
The author recommends to g8f"M/ = 107Y... 1.0, while the default is.0~° for single
and10~® for double accuracy.

The equations to model a body’s motion are derived from admagg multiplier velocity
based model according to Trinkle/Stewart and Anitescu#&db simulate the creature(s)
through time, a first order integrator is being used. It's,faat not accurate enough for
quantitative engineering. Each integration step advatieesurrent time by a given step
size, allows all joints to apply so called constraint foree$ring the bodies they affect
back into correct alignment and finally adjusts the statdl oifggd bodies for the new time
value. Higher order integrators are planned.

Collisions between objects within the simulated environhae handled as follows: Be-
fore performing a world step, the collision detection fuoes must be called to determine
the intersection areas. These functions return a list afagbpoints specified by its posi-
tion in space, its surface normal vector and its penetratepth. A special contact jointis
created for each contact point, supplied with extra knoggeabout friction, springyness,
spongyness etc and put into a joint group.

In fact, CF'M and ERP can used to control its spongyness and springyness of a jnint
fact, the user can realise the same effect as any springeedhstind/or damping constant
kg4 by settingE RP andC' F'M in dependency of the step sizeas follows:

hxk
ERP=—"2"_ 51
hx ky + kq (6.1)

1
M = —F—— 5.2
¢ hx ky, + kq (5.2)

Then a simulation step is taken. Afterwards, all contaattpare removed. Other colli-
sion detection libraries can be used instead of the buitiifision functions as long as
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they provide the right sort of information in the contactrgoi

To speed up the simulation at the cost of accuracy, the dpmatian “quickstep” can be
chosen. Another possibility to reduce computational timmidisable all object that do
not interfere with enabled bodies. As a consequence, théynger will be updated.

The contact and friction model is a fast approximation toGoéumb friction model, but
originally based on the Dantzig LCP solver described by BarBhe Coulomb friction
model is a simple, but effective way to model friction at @mttpoints by defining a fric-
tion cone to model the relationship between the normal amgktatial forces at a contact
point. If the total friction force vector is within the conleen the friction force is enough
to prevent the contacting surfaces from sliding. If it is ba surface of the cone then that
contacting surfaces move with respect to each other.

For graphical output, ODE includes the drawstuff libraryngsOpenGL. To render 3D
objects in a virtual environment, OpenGL only needs to knlegvdbjects plus additional
information on camera position and light sources. Theseméation are handled by draw-
stuff through the GLUT extension library of OpenGL.

The ODE library can be compiled as fast release or as slowergdgng version. In the
latter, function arguments are checked and many additromaiime tests are done. These
tests ensure the internal consistency, but they are alsedsens for a big loss of perfor-
mance. The current version is 0.5.

How ODE was used to create a realistic simulation of MiniDdg@s explained in the
subsequent section.

5.2. Model for MiniDog6M

In this section, the simulated version of MiniDog6M is deised.

The simulated Minidog6M was modelled for ODE. A schematid aoreenshot of the
virtual robot are illustrated in Figure 5.1 on the followipgge.

The shape and weight distribution of the control area (yelylinder in schematic) is

not specified in detail and is approximated with a centreghedpylinder. The legs (grey
rectangles in schematic) are approximated with cappeddstifor the upper (light grey)

and for the lower (dark grey) legs. The servos are modelleldoass (white boxes in

schematic). The spine links connecting the front and hintlgfathe robot are also rep-
resented as small boxes (light blue). The additional wsighthe feet are modelled as
small capped cylinders (green dots) within the lower ledg fobot dog in our simulation

is not altogether identical with the physical model, butdsea good approximation.

The proportions of each component are listed in Table 5riceSihe parameters in ODE
should not be too small (approximately 1.0), we set-8.1 cm for all linear and 0.
10g for all mass dimensions.
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Figure 5.1.: Simulation screenshot (left) and schematMiofDog6M (right)
The control area, the legs and the feet are approximatedoajiped cylin-
ders, spine links and servos with boxes. Actuation is impleted as flapping
hinge joints (orange dots). The springs are implementesttlyrinto the pas-
sive hinge joints (white dots).

The rigid parts of the body are connected with fixed joints, pper legs as well as the
spine are controlled and linked by hinge joints (orange dotschematic). The springs
are implemented directly in the lower hinge joints (whitédm schematic) by means
of adjusting Constraint Force Mixin@ F'M and Error Reduction ParametéiRP as
follows:

StepSize - SprintConstant

dParamStopERP =1+ (5.3)

DampingConstant
1

StepSize - SpringConstant + DampingConstant

dParamStopCFM = (5.4)

The constants restricting the dynamics of the simulatedrdbgt are listed in Table 5.2
on page 64.

In ODE the ground is defined over its plane equation:

a-r+b-y+c-z=d (5.5)

The left hand parameters define the unit normal ve@tér:) which stands orthogonal on
the surface. For flat grour{@ 0 1) is fine, for inclinea: we uset cos « for eithera or b and
sin a for ¢. The remaining parameteris zero throughout all experiment. The definition
of the coordinate axes can be seen in Figure 5.2 on page 64

TheC F M of the ODE world remains the default value, wher@d2P is raised to 0.8.

For reasons of reuse, encapsulation and information hidieglecided to implement The
simulated dog robot as C++ classni Dog6M To create an instance d ni Dog6M a
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Attribute Value
Size of one servo 0.298.2960.12
Mass of one servo 0.19
Radius of control area 0.12
Length of control area 0.296
Mass of the control area 0.55
Radius of the legs 0.05
Length of the upper legs 0.5
Mass of the upper legs 0.026
Length of the lower legs 0.6
Mass of the lower legs 0.102
Radius of one foot 0.05
Length of one foot 0.05
Mass of one foot 0.05
Height that the legs raise
the chasis off the ground 0.65
(in stance phase)

Size of spine link

attached to servo bend 0.1881.0.1
Size of spine link

attached to servo bend 0.011480.1
Mass of spine links 0.01

Table 5.1.: Linear and mass dimensions of elements builtiegimulated MiniDog6M
0.1=1 cm for all linear and 0.% 10g for all mass dimensions

user must not employ the standard constrdgtautM ni Dog6M dWeor | dI D wor | d,

dSpacel D space,

float StepSize) instead. The parameters refer to the envi-

ronment and the discretisation of time. This constructeats a standing dog robot with
the middle of the spinal link positioned over the margin @& ¥y-plane.

The changes in control as well as the public procedures wiltdéscribed in the next

section.

5.3. Controller for simulated Minidog6M

In this section, the public methods of our base class will bgndd. Further, Mini-
Dog6M's controller will be adapted to fit the circumstancésimulation.

Since the virtual and the real MiniDog6M’s controller, sklbbe as similar as possible,
we defined the same enumeration types for head position arsdagantroduced for the

1Thus the default constructor is declaged vat e.
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Attribute Value
Springconstant 418
Dampingconstant 0.05

Angular range of spring driven joints [3060°]

Max force produced by one servo 5
Angular range of hind right servo [-51104.5]
Angular range of hind left servo [-8592.5]
Angular range of front right servo [-51108]
Angular range of front left servo [-5¢590°]
Angular range of servo “bend” [-6562°]
Angular range of servo “twist” [[72573]

Table 5.2.: Constants responsible for manoeuvrability

Figure 5.2.: Definition of coordinate axes in ODE

real world. The agent’s position and gait as well as the heatlpe, the current angle and
frequency of each motor, can be read out with the respectivprgcedures.

The agent’s position is defined as the position of the heaufire of mass and is delivered
in form of a vector(z y z) of real values byGet DogPosi ti on.

The gait can be setwitBet Gai t respectively read witlet Gai t . To start running,
trotting or backing up, the user has to dstive. These behaviour can be stopped if the
gait is set toStill or if I ni t is called which stop the robot and brings all motors to mid
position.

The acceleration sensor cannot be simulated physicaligtieally, but, at present, this is
no problem since, even in the real world, only the pre-preedslata in form of the agent’s
position are presented to the controller. This effect cailyebe reached in ODE since the
absolute and relative position of the centre of mass of eigath body and each joint an-
chor can be read out witthGeontGet Posi t i on respectivelydJoi nt Get Hi hgeAn-
chor . This is why we classify the position on the basis of heigfffedences between
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head, backside, control area, servo “bend”, joint anchbupper front legs along z-axis.
Basically, we also employ the algorithm 1 on page 48, but tsuits the expectations of
the acceleration values with the corresponding heighewfices in the orthogonal po-
sitions. Further, we leave out step 5 to 8, since there is fiveraent necessary. The
classification process can be kicked off wBansePosi t i on. The resulting position

can be read witléet Posi ti on.

The angle of the hinge joints is indirectly controlled byatsgular velocitydPar anvel ,
instead of assigning values of 0..255 to the distinct pas#i(as it is in the servo mo-
tors). As it is in real motors, the target position is not al&aeached exactly in one step.
Hence we implement a controller that constantly adjustgtineéerror using the following
equation:

dParamVel = TargetMotor Angle — Current Motor Angle (5.6)

The resulting leg trajectory is qualitatively pictured iigére 5.3.

motor

gl
angle /’\\/{\\j{\

target motor angle

current motor angle

A
VY

p time

Figure 5.3.: Motor control according to equation 5.6
The controller constantly tries to nullify the joint erroetiveen current (red)
and target (black) motor angle

The current motor angle as array of double values can be réad3at Cur r ent Mo-

t or Pos. The controller frequency/amplitude of each motor can lael respectively set
as array of double values witBet Curr ent Mot or Freq / Get Curr ent Mot or -
Anpl respectivelyset Control | er Paraneter / set Mot or Anpl .

The classical pre-programmed standing up trajectorieprangded bySt andUp.

For facility of inspection, the above mentioned public noelh are summarised below:
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M ni Dog6M )

M ni Dog6M dwor | dI D
wor | d, dSpacel D space,
fl oat StepSize)

~M ni Dog6M))

void Init()

voi d Move()

voi d SensePosition()

const dReal *

Get DogPosi tion()
doubl ex*

Get Cur r ent Mot or Pos()
doubl ex*

Get Cur r ent Mot or Anpl ()
doubl ex*

Get Cur rent Mot or Freq()
Posi ti ons Get Position()
Gaits CetGait()

void SetGit(Gits
gait)

voi d

set Control | er Par anet er (
doubl ex freq)

voi d

set Mot or Anpl (doubl ex
Ap)

voi d St andUp( bool

&r eady)

Standard constructor (do not use)
Constructor foM ni Dog6M

Destructor fotM ni Dog6M

Stops agent’s motion and brings all motors into
mid position

Triggers locomotion with preset gait in
M ni Dog6M : Gai t

Classifies  position of the agent's
head. Classification result is saved in
M ni Dog6M : posi tion

Returns position of agent’s head as vector of
real values

Returns current motor angle of all motors as
vector of real values

Returns current motor angle of all motors as
vector of real values

Returns current motor angle of all motors as
vector of real values

Returns position of dog robot’s head

Returns current gait

Sets the agent’s gait

Sets motor frequencies as vector of real values

Sets motor amplitudes as vector of real values

Triggers pre-programmed standing up se-
qguences

The motor primitives are also transferred into simulatioike in the real dog each motor
primitive is carried ouNumTi cks. The step size in all our experiments is set to 0.05.

In the next section we will select three different morphadsgor our further studies.

5.4. Selection of different morphologies

In this section, we will point out further effects of morpbgl and on that basis select
three different morphological variations for our ongoingdes.

Some central effects of morphology are already describetapter 3, namely increased
manoeuvrability through additional weights in the feeg timbalance and directionality
in Figure 3.6 on page 49 and the impact of inclined ground atiee 3.4. Other plain
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examples can easily be found in simulation. They which mgpus to investigate not
only the consequences of different vocabularies, but deo tependency of different
morphologies.

In one experiment, the shape of the head is changed into adculd® soon as the robot

dog lands or turns on its back, the weight of the head pulls the whole bearing area of
the cuboid and the robot will not be able to free itself froratthosition. The agent gets
stuck because its hind and legs cannot reach the ground aeyand because the pure
rotational moment is not enough to turn over the edges of daelh This is a classical

deadlock.

Moreover, the effect of rolling over on its back from one sid¢he other just by twisting
the spine first in one and then in the opposite direction srmgdies on the mismatch in
the weight ratio of head and hind. If the weights were equnmd,quadruped would only
twist back and forth and end up in the same position it stdrted.

All these consequences do not result from changes in theatlemtstrategy, but from
more or less significant changes in the weight distributioator range and shape of the
head. From now on we concentrate on the head because ountpegperiments imply
that changing its shape has the largest impact on the staoditask. Thus we introduce
three additional settings keeping up the original weiglstribution, but with different
forms of the head. The experimental morphologies with eitioatrol area in shape of
a horizontal or vertical capped cylinder or a round head @i@d in Figure 5.4. We
would like to survey more variations here, but further exalimn goes beyond the scope
of this thesis.

Figure 5.4.: Experimental morphologies (original, vaatjcound)
Changes in the shape of the head have biggest impact on thésdgehav-
iour. Mass and centre of mass are equal in all versions.
Vertical: cannot roll over on the back
Round: cannot stand on the head, but rolls over on the backeaesy

A plain consequence of this choice is the fact that the rghdwad cannot roll over on the
back with vertical head and that it cannot stand on the he#dthe round head.
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Note that the original MiniDog6M can use each motor pringtim vocabulary 4 to stand
up, whereas some of the actions in the other sets will be atelpluseless. Anyway,
the eligibility of certain components may change dramdtias we alter the robot dog'’s
morphology.

To investigate how the shape of the head affects the natwt@ount of solutions, a
measure for behavioural diversity and a full search algorito generate it are developed
in the next chapter.



6. Generating and evaluation of
behavioural diversity

This section describes the first row of experiments for theuation of the vocabularies
selected above. First, we establish a general means to certiq@abehavioural diversity
of different tasks or vocabularies. To overview the varigtjegal standing up sequences
on flat ground and inclines, we ran a full search simulation.

6.1. Measure for behavioural diversity

In this section, a measure which is independent of task, hudogy and control concepts,
is derived in order to evaluate and compare behaviouratsliye

6.1.1. An intuitive approach to behavioural diversity

Up to this day, researchers all over the world cannot agrea single definition of the
term intelligence. Despite the great variety of explametjdhere is one central aspect in
most of them and this is the generation of behavioural dityer&n organism that always
exhibits the same behaviour is generally not consideredtafiigent being. This concept
holds for all levels of intelligence, for abstract thinkiag well as for simple tasks, in
humans and in all sorts of animals.

It is understood that behavioural diversity must always densin contemplation of the
given task. Whether a person can open a bottle of beer in iesbn20 different ways is
meaningless if he or she is sitting in front of a bottle of wite order to provide a base
for comparing behavioural diversity related to the samk, tag establish a measure that
will be employed later on.

If we follow the different ways through Figure 3.6 on pagew®,can easily find multiple
paths of equal or different length from each initial positio goal position. Regarding
initial positionLeft, we find six sequences requiring five and also six sequengesgirey
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six time steps (disregarding loops). Providing the picgusth numbers top down and
from left to right beginning with 0, these twelve sequenaes a

4 — 8o0or9 — 10 — 14 — 16 — 19 (length: 6)
4 — 8o0or9 — 10 —» 14 — 17 — 19 (length: 6)
4 — 8or9 — 11 — 16 — 19 (length: 5)
4 — 8or9 — 11 — 17 — 19 (length: 5)
4 — 8o0or9 — 12 — 15 — 17 — 19 (length: 6)
4 — 8or9 —- 13 —- 17 — 19 — (length: 5)

A simple means to measure behavioural diversity could beldia number of different
sequences e.g. 12. Itis obvious that 12 would be considetéeribhan 3. Having a closer
look we will find that it is not that easy.

Imagine two robots achieving the same goal. Robot A can ahbesveen three differ-

ent behaviours in order to succeed, whereas robot B managdsefnaviours. Is robot B

indeed preferable to A? Not always. To make a point let usidenshe task of grasping

an object on the basis of motor primitives such as grab wghtdhand, step towards the
table, stretching arm out while standing on the tiptoesdlvernst etc. which can be com-
bined to the following sequences:

Al - 3 — 5
4 — 6 — 5
/7 — 2 — 3 — 1
BB1 - 4 - 5 — 2
1 - 4 - 5 — 3
1 - 4 - 5 — 7
1 - 4 — 6
2 - 4 — 6

If, for any reason, it is impossible to carry out motor prinet4, for instance because of
a hindered joint, robot B would have to give up, whereas réboould still get along and
reach the goal position of its task.

Now picture an obstacle between the robot and the objed .clear that robot A, though
being defeated comparing the plain number of availabletispis, will be more likely to
succeed. Whereas robot B can only try to get around the dbstaith its final move (at
least in four out of five possible choices), robot A can adaptimearlier e.g. step aside
or take the other arm. Since adaptability is the most impbnt@ason for behavioural
diversity, robot A would be better suited than B because wfdorrelation between the
behaviours.

On the other hand, we can also think of an example where thensalye is on robot B,
for instance, if one sequence is especially energy effigetitspecial sub-goals can only
be reached with particular parts of a sequence. Moreovireifigent has to adapt in the
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course of a particular (long) sequence, then robot A woule @ revise everything and
select a new sequence, whereas robot B can switch in the emdfidequence to another
one which so far equals our first choice. Thus it would be déérto maintain a balance
between diversity and heterogeneity.

Moreover, a researcher should take into account the catyatfia vocabulary to transfer
a given problem or task into another, for instance standpfyam the left to standing up
from the right. So, if arobot is hindered by a wall or any othlestacle and thus cannot get
up from its current position, it would be very useful to rolles to another position where
it has enough legroom. Therefore, the more transfer capaisiengaged, the better.

6.1.2. Behavioural-Diversity-Index BDI

Providing a quantitative scale unit to compare the behasialiversity generated by dif-
ferent vocabularies, we derived a measure BehaviouradBity-IndexB DI according
to Algorithm 3 on the next page.

First, we will reduce the entirety of all behaviours to a bagaignificant behaviours.
Thereby, all needless sequences, which consist of anathertér) sequence plus a pre-
fix of meaningless actions, will be deleted. We do this, siweecan always lengthen

a sequence by performing senseless actions beforehandrefffagning sequences are
divided into groups in which all members either have the saewginning or the same
ending. Further, these groups are divided in to subgroupdenitical length. For each
group a value called diversity factd? is calculated which expresses the heterogenity of
the corresponding group. TheD1 is the product of the total amount of legal sequences
with the mean diversity factor.

Note that motor primitives involving Don’t-Care must not iewed in isolation but in
context of their forerunners and hence must be substituitbdte fully specified version.
Each version counts as separate component.

One might argue that, under certain circumstances, equghtgeof the non-member
and the member contribution to equation 6.1 on the followiage is inappropriate. For
these cases we recommend to use equation 6.3 instead ofoegédt. The additional
weightsW,,.,..me- for the non-member part and,,,,,. for the member part are calculated
by equation 6.4 and equation 6.5 respectively.

D = Wnonmbr(n) : (1 - M)

Niotal
W (n) Z (nsubmbr ' (1 B nequal)) (6.3)
allgroups | total !
(1 n<1
Wipr = § L4sin () 1 <n<2N (6.4)
2 2N <n
(2 n<1
Wionmir = § 1+ cos () 1<n<2N (6.5)
1 2N <n

\
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Algorithm 3 Behavioural Diversity
1. Delete all sequences that consist of another (shorteuesee plus some prefix.

2. Extract groups of sequences which either have the samaneg or the same
ending. Each sequence may appear in more than one group.

3. Divide every group into subgroups of identical length.

4. Calculate the diversity factdp for every group as follows:

D=1-— N grpmbr + Z <nsubmbr) . (1 . ne(;ual) (61)

Ntotal Ntotal
all subgroups

with

Ngrpmbr = Z Nsupmer. NUMber of group members

all subgroups

Nsubmpr - NUMber subgroup members
Nt - tOtal amount of legal sequences
Nequal : NUMber of equal steps
[ : length of sequence (=number of steps)

5. CalculateB DI as the product of the total amount of legal sequences witmtean
diversity factor.

BDI = . N p (6.2)
Ngroup all groups

with
Ngroup :NUMbDEr of groups

Heren denotes the number of legal sequences produced by a digtiogbulary. The
resulting weight distribution is pictured in Figure 6.1.€lthresholdV can be chosen in-
tuitively or as average amount of sequences over all voealeslthat we like to compare.

Another criterion can be the average length of the distiegtisnces. Generally speaking:
If you want a job done, the sooner the better. If a robot autumgsly explores its en-
vironment, it is convenient to discover a maximum area leefeturning to the charging
station. In our case, all motor primitives have the sametturaespectively action period
and therefore we measure the duration of the entire seqignoaunting the steps. Nev-
ertheless, we consider speed as non-functional desigriontand thus less important
than diversity and total amount of sequences.

We calculate both, average length and behavioural diyessparately for all initial posi-
tion. Merging all information of one vocabulary, we weighetindividual values with the
probability of its initial position.
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Vu}n)

DT

Figure 6.1.: Suggested weight distributian,;, (blue, eq. 6.4) andlV,,,....,- (red, eq. 6.5
on page 71)
Recommended weight distribution if equal weights betwéemion-member
and the member part of equation 6.1 on the facing page is iropgpte. The
threshold N can be chosen intuitively or as average amous#apiences over
all vocabularies.

6.1.3. Example

Let us look at the following example:
Vocabulary A

A1 —-— 3 — 8 — 5

Ay 4 — 6 — 7 — b

As: 7 — 2 — 3

Vocabulary B

B:1 — 4 — 5 — 2

B: 1 — 4 — 5 — 3

By: 1 — 4 — 5 — 7

By: 1 — 4 — 6

Bs: 2 — 4 — 6

Bsg: 5 - 7 - 2 —- 4 — 6

CalculatingBD1:

1. Delete sequences:
Robot A: NoOp

= Niotal = 3
Robot B: Delete sequendeg;
= Niotal = 5

2. Extracting groups:
RobotA: G, ={A;, A} e {... =5}
= Ngrpmbr = 27 Nequal = 1
Robot B: G = {Bl,Bg,Bg} € {—> 1—-4—->5— }
= Ngrpmbr = 37 Nequal = 3
Gy ={By,By,B3,By} € {—1—4— ..}
= Ngrpmbr = 47 Negqual = 2
G3={By,Bs} €{... -4 — 6}

= Ngrpmbr = 27 Nequal = 2
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3. Divide into subgroups:
Robot A:  G1: no subgroups necessary
= Nsubmbr = 2, =3
Robot B: G1: no subgroups necessary
= Ngubmbr — 3, =4
G2.1 = {Bh B27 BB}
= Ngubmbr = 3, =4
G2.2 = {84}
= Ngubmbr — 1, =3
G3: no subgroups necessary
= Nsubmbr — 2, =3

4. CalculateD:
RobotA: D=1-2+2.(1—-1)~0.83
RobotB: Dy =1—-32+2.(1—-2)=0.55
p— 4 ~
D2_1—§+§- 1—§)+§-(1—§)N0.57

5. CalculateB DI :
Robot A: BDI = nypeq - D = 3-0.83 = 2.49

Robot B:  BDI = nyge - 242258 ~ 5. 0.62 ~ 3.08

Calculating the average length:
Robot A:

A+ Al + 1 As || _4+4+3
Niotal 3

3.67

Robot B:
[ Bill+ I Bl + I Bs [+ [ Bal[ + 1 Bs || _4+4+4+3+3

Niotal by

4.2

In the next section, we create behavioural diversity withlesearch trial and error algo-
rithm.

6.2. Full search for behavioural diversity

As a tool for overlooking the behavioural diversity genedaby each combination of
head, vocabulary and ground angle, we set up an algorithtrpéréorms a structured
walk through the entire search space and which will be desdrnin this section.

As the longest sequence from one of the basic positions il $&kes five steps in the
real world, we decided to give the simulated robot six stepsyt After these six steps,
the controller derives the next sequence, execute it ardnadtds evaluates its result.

In order calculate the next sequence, we take the whole sequas integer which is
increased stepwise. Seeing that this results in six to tineepof ten possibilities, we
considered a reduction of the search space in five steps:
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1. The last action must be Init(), since this is the goal mptisition.

2. The first action must never be Init(), since this is alsodtagting motor position
and hence would be a wasted step.

3. Never the same action twice in a row, as this would also basierof time.

4. When an action sequence is only differentiated from aipusly successful se-
guence by the very last statements of that successful segutnere is no further
need to investigate the current sequence further. Exerthiem would bring no
new insights.

5. A currently executed action sequence is skipped whemiitet step results in one
of the basic position plus all motors in position zero.

If a sequence reaches positionrStandwith all motors in mid position, success will be
encountered and the sequence will be logged in th&\iles2St and. t xt . Leading to
one of the other basic positions execution is also stoppede $ollowing steps will be
acquired by the learning process from that position. Actequences that denote transi-
tions between the basic positions are recorddsbigi cTr ansi ti ons. t xt .

The resulting files for one initial position have the follogistructure:

8 0 10 -->basic position: 1

130 17 --> basic position: 2

143 120 -->Dbasic position: 1
195 2 30 -->Dbasic position: 1
157 450 -->basic position: 5
1430 4 6 0 --> basic position: 1
1531 4 8 0 -->basic position: 1
1931 4 9 0 --> basic position: 4
1347 4 2 7 --> basic position: 1
1848 53 7 --> basic position: 5
2940 75 7 --> basic position: 5
23514 7 6 7 --> basic position: 1
2450 7 8 7 --> basic position: 3
2960 79 7 --> basic position: 3

The left column despicts an example Wy s2St and. t xt . The example foBasi c-
Transi tions. txt is shown on the right. Here, each line represents one saolutio
sequence. The numbers refer to the index of the correspgmnaitor primitive. The ex-
ecution of a sequence propagates from left to right. Thensrin can be translated with
“bring the robot from the initial position to ”.

The overall full search algorithm is listed in Algorithm 4 tre next page below.

In order to find most advantageous members for a vocabutamguld be reasonable to
stepwise trade insignificant components for new ones arglgradually improve the set.
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Algorithm 4 Full search algorithm
until (all sequences executed) do {

dog- >SensePosi tion();

dog- >Get Current Mot or Freq() ;

bool ready=((dog->CGetPosition()==Stand)
&& (all rmotor freg==0));

if ((all notor freg==0)&&(execution started)
&& (dog->GetPosition())!= Stand))

{
Log sequence in file BasicTransitions.txt;
return -1;
}
if ((!'ready)&&(execution not finished))
{
Execut e next action;
return O,
}
el se
i f (ready) /1 Standi ngUp acconpl i shed
{
Log sequence in file Ways2St and. t xt;
return 1,
}
el se /1 ActionSequence failed
{
return -1;
}
if (return value !'= 0)

cal cul at e new sequence;

The significance or importance of a primitive can be seenrimgeof its contribution to
the behavioural diversity of the whole vocabulary. If thé&aours are represented as
sequence (for instance as the result of our full search isthgoy, this can easily be mea-
sured by counting the frequency of occurrence. If the deveehaviours are presented in
a graph such as Figure 3.6 on page 49, one has to multiply tinéeof incoming and
outgoing connections. The more sequences depend on aspetidn, the more justified
Is its nomination for the final set.

We repeat this algorithm for all vocabularies and, inspbgdhe qualitative experiments
in section 3.4, also for two alternative ground angles. Agh@areal world experiments,
we concentrated on the four extreme head positions strdaytnhill, uphill, left or right
with inclinations of 22.8 and 30. The result are presented in the next section.
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6.3. Results

In this section, we analyse sequences with two or three fwisiderived from our full
search algorrithm. We review the Behavioural-Diversitgéx, the average length, the
transfer capabilities for all combinations of vocabular@ad morphologies in flat terrain
and the robustness on slopes with 2236d 30. Moreover, we evaluate the significance
of each primitive.

Though we tried to reproduce the physical robot dog as tezllly as possible, there are
several sequences that only work in simulation (the sanastiot the other way around),
but these minor mismatches are insignificant for our con@pesearch. In the follow-
ing, 'O’ will be the shortcut for the original shape of the dea/’ for the vertical cylinder
and 'R’ for the round head.

The evaluation of distinct vocabularies according to thesoee for behavioural diver-
sity postulated above is listed below. Table 6.1 scheduiesaverage length and the
Behavioural-Diversity-Index. Average lengtko’ tributes to the fact that the quadruped
cannot stand up from all initial positions (hets=ft).

Vocabulary| Average Length | Behavioural-Diversity-Index
@) \ R @) \ R
1 oo 273 o 7.33 8.81 6.74
2 285 285 2.83 16.66 16.47 12.73
3 293 28 29 559 6.64 2.27
4 295 295 294 8.23 8.62 7.62
5 284 284 279 1545 16.49 12.19
6 294 288 291 7.82 9.63 3.26

Table 6.1.: Behavioural-Diversity-Index of vocabularesluated for standing up within
two or three steps
Those vocabularies are considered the better, the lowavitrage length of
their solutions. &’ means that the agent cannot stand up from at least one
initial position (here: Left). Those vocabularies are ¢dased the better, the
higher theB DI of their solutions. Looking atthB D1, vocabulary 5 performs
best and vocabulary 3 poorest, irrespective of the shapgedig¢ad.

Looking at theB DI, we find that vocabulary 5 performs best, vocabulary 2 sebmst
and vocabulary 3 poorest, irrespective of the shape of thd.Heank three to five depend
on the particular morphology. Generally, a Flexibilitydex greater than zero results in
an higherBDI. This can be explained easily, if the actual meaning’'6f in the sense
of intermixing of motor primitives, is considered. By thatans, a single primitive can,
depending on its predecessors, occur in many differersintsi In fact, the set of actually
ten primitives is extended with a number of “mutants”. A thonereased vocabulary
naturally results in more diverse behaviours.

The much more interesting fact is that thé) 1 of original and vertical head is always
very similar. This is especially fascinating, since veryeafthe original and the round
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Table 6.2.: Significance of each motor primitive (first cojumthin its vocabulary (first
row) in dependency of the shape of the head (second row)
1 signifies the most and 9 the least important component Bb#havioural
diversity. For a vocabulary with maximum behavioural dsisf, a researcher
should select the most significant primitives from each set.

head have at the most part identical solution, whereas thieakehead has not. This
instance automatically proves that our measure is indegebendent of the underlying
behaviours.

Table 6.2 shows the significance of each primitive in depeaglef the shape of the head.
The numbers from 1 to 9 signify the order of priority where dngfies the most and 9 the
least important component within each set. In most casegndisance value of 9 means
the respective component is not used at all. For a vocabuldnymaximum behavioural
diversity, a researcher should select the most significamifo/es from each set.

Regarding the above mentioned transfer capabilities, widlfiat irrespective of the shape
of the head, those vocabularies with Flexibility-Indexagex than zero (vocabulary 3 to 6)
have equal or more possibilities to traverse between the pasitions than the according
vocabulary in group A. There are only two exceptions: vatthead, vocabulary 4, initial
position back and original head, vocabulary 5, initial fiosi head. This result can also
be explained refering to the additional variants. Actyallys not at all surprising that
the degree of behavioural diversity complies with the transapability, since, in a way,
the transfer capabilities will extend to solutions if thegne given more time. In doing
so, they also contribute to the behavioural diversity. Theatgst difference hereby is
between vocabulary 2 and 5, the least between 3 and 6. Theedetsults can be looked
up in Table 6.3 on page 81. Here, the numbers represent therdmbvalid sequences
of length two or three that lead from the initial position ¢ tleft to the initial position
in the column. It is clear that we left out transitions whére initial and the goal posture
are identical because we can just do nothing instead.

Comparing the different morphologies, we find many relaibetween their solutions
that not at all arbitrary, but that are grounded in the choifomotor primitives as well as



6.3. Results 79

in the shape. Here the stress lies on shape, since the wadjtii@centre of mass of each
part of the body is identical in all versions.

Though only few strict rules can be identified, there are mexaymples where the entirety
of solutions for one initial position are equal or a subgradpghe solutions of another
initial position within the same or different head forms.el$olutions for the round head
for instance intersect to a large extent with the solutidiib®@original head. The vertical
head’s solutions faRightoften hold forBack too. Further, we find that the set of solutions
for each initial positions of the round head intersects Withrespective set for the original
head. Regarding the original head, the solutions for the fignd side are strongly related
to left hand side solutions of the vertical head.

Moreover, we find that the solutions for all initial posit®and heads are most dissimilar
for vocabulary 3 and 6. The highest similarity can be deteébde vocabulary 2 and 5.
Herein we even observe symmetrical tendencies. This meatisef original head that all
solutions for theLeft are also valid foBack The same holds for about half of the solu-
tions for RightandHead However, this relation is inverted for the vertical headahh
means that the solutions f8ackare identical to those fdRightinstead ofLeft

We find that single solutions are valid for all initial positis of one head ('position sta-
ble’), some for the same initial position, but of differergdds (form stable’). Most
surprisingly, some solutions are even valid for all formsl afl initial positions (form
and position stable). These especially robust sequencelecdivided into two groups.
In the first group, MiniDog6M needs to carry out the whole stpe for all basic posi-
tions, whereas in the second group the robot can still genlypwith the last part of the
sequence.

Actually, all vocabularies provide at least one type stgbithough all of them produce
form stable sequences for the right hand side, only vocap@la5 and 6 produce form
stability for the left hand side. This imbalance is groundethe asymmetry of motor
range. Depending on vocabulary and initial position, theoant of stable sequences
varies considerably. For vocabulary 5, the amount is nghdysame foteft andRight
Though vocabulary 5 is most stable faeft, is only second rank faright Still it the best
choice regarding morphological changes. The biggestréifiee is, as usual, produced
by vocabulary 1, which is the most form stable vocabularyRayht but unfortunately
cannot provide any solution fareft

Further, we find that it seems to be much harder to createipostable solutions than
to create form stable ones. So only the vertical head suppadition stability for all
vocabularies. In contrast to that, only vocabulary 2 andries® position stable solutions
for the original head. Once again, vocabulary 5 is our first @wscabulary 2 our second
choice. The last rank is preserved for vocabulary 4. Reggrthiose results, it is not
astonishing that only vocabulary 2 and 5 achieve both, farchposition stable solutions.
Again 5 is better than 2.

An interesting fact is that sequences, that are stable yam way, involve motor prim-
itives with Flexibility-Index greater or equal zero, buathprimitives belonging to form
and position stable sequences all have Flexibility-Indeo z
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Considering the above mentioned compliance between thicw of different heads,
one would assume that the respective agents behave symilashanging environment,
for instance on inclines. To be concrete, we expect that fetable sequences on even
ground, perform for all heads identically on inclines. Tél®uld above all be true, if, as
itis in our case, the weight distribution and the centre o$smare identical.

Surprisingly, this assumption is not true. Tables 6.4 ore® 6.5 on page 82 and 6.6
on page 83 show the validity for learned behaviours on iesliof 22.5 and 30 (sin and
cos are an abbreviations fain o respectivelycos o). The columns are labelled with the
number of the vocabulary, the ground angle and the normabrécy =) on the ground.
'R’ stands forRightand 'L for Left '=" means that all behaviours for flat terrain are
also successful on the respective inclination. '+ mearsd tiew behaviours emerged.
The opposite is the case for 'X’, where there is no soluticallatThe other shortcuts are
composed of the symbol for the shape of the head and the syortible initial position
whose behaviour is assumed.

As we can see, the original and the round head perform equadtber in most cases.
The only exception is vocabulary 1, which accomplished lestsavioural diversity on
steep inclines (but equal to vertical he&ight). Hence we conclude that the round head
performs better than the original and that all vocabulasiesof equal quality except of
vocabulary 1. Nevertheless it is not that easy for the v@rtiead. We can divide its
robustness into three different categories. Vocabulary 2 switches the solutions for
LeftandRight The same holds for the right hand side solutions of vocapdlas well as
for the left hand side solutions of vocabulary 6. The leftdhaide solutions of vocabulary
1 behave as if with the original head (two exceptions on mediof 22.5). For the right
hand side, vocabulary 6 performs equal or better than tiggnatihead. Note that VL for
vocabulary 1 to 5 is for the most part the same as OR.

As a conclusion, we can say that the original and the roundisak are really robust for
applications in environment with slopes of various degrees$ directions. Those for the
vertical head underlie a strange morphological effect taaises MiniDog6M to switch
left and right hand solutions. So far, we cannot explain shiange morphological effect
except that it is somehow grounded in the shape.

Generally trial and error at random is not a good strategpfoagent behaving in natural
environment. To get along in new situation structured seara learning is much more
suitable. Therefore, the support of the learning progreas important feature of a good
basic vocabulary.
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O 1 2 3 45 Vv 1 2 3 4 5 R |1 2 3 4 5

11,- o0 O OOf22,- O OOO||1T 1|]- 0 O OO
2,0 - 0 0O 2/0 - 00O 2/0 - 0 0O
3|14 12 - 0 O 3(14 12 - 0 O
4118 1 0 - O

211 - 0 O0O|]2 1]- 0 O0O0 42 1/-1 0 0O
2/0 - 0 0O 2/0 - 00O 212 - 0 0O
3(14 0 - 0 O 3(28 O 0 O
412 10 12 - O

3 1,- 2 6 O0O3 1,- O 4003 1/-1 7 0O
21 - 7 00 2/0 - 2 0O 2/0 - 7 0O
3/1 12 - 0 O 3/]2 1 - 00
4,0 13 2 - O

4 11- O 4 1 0|4 1|- O O 2 0|4 1|- 0 6 0O
2/0 - 0 2 0 2/0 - 3 10 2/0 - 0 0O
3(14 12 - 0 O 32 2 - 00
4118 7 0 - O

5 1- 1 4 0 0||5 1]- O 0 4 45 1|- 3 4 0O
2/0 - 0 2 0 2/0 - 3 0O 210 0 1 0
3(12 1 - 2 O 3(20 2 10
4,0 17 10 - O

6 1| - 3 O 0o/|l6 1, - O O O O||6 1|- 1 10 O O
2/1 - 8 0O 2/0 - 6 0O 2/0 - 9 0O
3/1 12 - 0 O 3(12 5 - 0 O
4,0 13 3 - O

Table 6.3.: Transfer capabilities of underlying vocabelsr
The first column labels the subsequent section with the nuwittbe vocab-
ulary. Each section is to be read as follows: standing up fi@w] can be
transferred into standing up from [column] by [item] seqeen We left out
transitions where the initial and the goal posture are idahtbecause we can
just do nothing instead.
We find that irrespective of the shape of the head, those wbaabs with
flexibility index greater than zero have equal or more pabisds to traverse
between the basic positions than the according vocabuldimput.
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Vocabulary| « (0, cos, sin) | (0, — cos,sin) | (cos, 0,sin) | (0, — cos, sin)

R L R L R L R L

1 225 | = = VR = VR = VR =
30.0 | = = = = = = = =

2 225 | = = = = = = = =
30.0 | = = = = = = = =

3 225 | = = = = = = = =
30.0 | = = = = = = = =

4 225 | = = = = =
30.0 | = = = = = = = =

5 225 | = = = = = = = =
30.0 | = = = = = = = =

6 225 | = = = = = = = =
30.0 | = = = = = = = =

Table 6.4.: Validity for learned behaviours on inclinesigival head
=: All behaviours for flat terrain are also successful on #spective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.

R: Right
L: Left
Vocabulary| « (0, cos, sin) | (0, — cos,sin) | (cos, 0,sin) | (0, — cos, sin)

R L R L R L R L
1 225(= = |VR = |VR = |VR =
300 | + = = = = = = =
2 225 | = = = = = = = =
300 | + = = = = = = =
3 225 | = = = =
300 | + = = = = = = =
4 225 | = = = = = = = =
300 | + = = = = = = =
5 225 | = = = = = = = =
300 | + = = = = = = =
6 225 | = = = = = = = =
30.0 | + = = =

Table 6.5.: Validity for learned behaviours on inclines:uRd head
=: All behaviours for flat terrain are also successful on #spective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.
R: Right
L: Left
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Vocabulary| « (0, cos, sin) | (0, — cos,sin) | (cos, 0,sin) | (0, — cos, sin)
R L R L R L R L
1 225 | VL OL = oL X OL | VL oL
3000 | VL OL | VL OL VL OL | VL oL
2 225 | VL VR | VL VR VL VR | VL VR
300 VL VR | VL VR VL VR | VL VR
3 225 | VL VR | VL VR VL VR | VL VR
300 | VL VR | VL VR VL VR | VL VR
4 225 | VL VR | VL VR VL VR | VL VR
300 VL VR | VL VR VL VR | VL VR
5 225 | VL VR | VL VR VL VR | VL VR
300 | VL VR | VL VR VL VR | VL VR
6 225 | OR VR | OR VR OR VR | OR VR
300 |OR+ VR | OR+ VR |OR+ VR |OR+ VR

Table 6.6.: Validity for learned behaviours on inclinesrtigal head
=: All behaviours for flat terrain are also successful on #spective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.
R: Right
L: Left
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/. Effects on learning progress

In this chapter the design of the learning environment aedettperimental setup is de-
scribed. Finally the learning progress is evaluated.

7.1. The learning method

In this section, the concepts that build the basis of ouniegrframework are described.

7.1.1. Q-Learning

Learning is particularly difficult in robotics because dagsand acting in the physical
world involves uncertainty due to incomplete and noisy senaformation and a dy-
namically changing environment. Here learning means adeun of a task fulfilling
sensory-motor control strategy through trial and error.dding so, learning strategies
disagrees with adaptive control by allowing failure durthg process of learning. This
behaviour resembles the way that humans and animals acopyrstrategies in thinking
and movement. Reinforcement Learning (RL) is a wide spreadoach to solve a great
variety of learning problems without relying on a teachesopervisor. Based on early
conditioning work in psychology, learning is engaged bgrattion with the environment
[Sutton 98, Neumann 05].

During the process of learning, the adaptive system urkkstsome actions which affect
its environment. Hereupon, it is reinforced by receivingalar evaluation of its actions.
This reinforcement signal is generally known as 'rewardheTreinforcement learning
strategy stresses outputs that maximise the receiveddewvar time. To maximise the
gained reward, those actions must be preferred that in tdgzhto the highest reward in
the given situation. This act of taking advantage of gatth&rewledge is called exploita-
tion. Yet, there might be new actions that are unexploretlidaud to even higher reward.
Therefore the trade-off between exploitation and expionais one of the key aspects in
RL.
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At each time step, the learning system receives the stapéthe environment. Depending
on that, an action a is performed, which transfers the systémthe new state’. This
transition is reinforced by the rewarl Time is generally preceived as discrete.

A central idea of reinforcement learning, together withltand error search and delayed
reward, is the estimation of how good it is for the agent torba given state or to take a
certain action in a given state. This estimation is basdweibn a value functiong or

a Q-Function® which belong to the class of temporal difference learnin@)(TTo make
long-term predictions about the dynamical syst&if) depends on the current state and
Q(s,a) on the current action-state pair. An action selection meisha called ’policy’
chooses the highest rated action for each state.

In this context, Q-Learning is one of the most popular typRehforcement Learning. Its
aim is to find a satisfactory Action-Value-Function whichximises the future discounted
reward if the agent chooses the actioim states and then resumes poliey. This can be
expressed in equation 7.1.

Q(s,a) = E[R(s,a,s') +v*Q(s',d')] (7.2)

where actiorn’ was chosen according to the policndR(s, a, s’) is the reward gathered
during the last stepf/(x) designates the expectation:afNeedless to say, that an action
which was selected in a distinct state in the past and led tomuem reward are preferred
whenever this state reoccurs.

Therefore, the Q-valu@(s; a;) at time indext is a matrix with one value for each dis-
tinguishable state and each action initialised with zerd apdated during the learning
process by

Q(s¢-1,a1-1) = a - err(t)
err(t) = R(t) + v - max{Q(s;,a)la € A} — Q(s4-1, a1-1) (7.2)

with learning ratex and discount factoy. A designates the batch of actions that are avail-
able in the current state.

Often the Q-Function is represented as a table, but sincenttier angles in our model
are implemented as real values, a table is not feasible.

7.1.2. Linear function approximation

To solve the problem of continuous state space mathemigti@&lommon tool to estimate
functions of all kinds is the so-called linear approximatié linear model for a function
f(x) consists of a set of basis functions which are combined inighted sum as follows:

f(X)=w;-hi(X) i=0...m, X = (21,...,2p) (7.3)
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Whereas all parameters of the basis functibnare fixed (otherwise it would be nonlin-
ear), the weights; are adapted so that the resulting sum resembles the orfgimztion
f(X) as much as possible. For theoretical concerns, homogenaatdn sets are of
special interest. In this context, homogenous means ofadhee type, e.g. polynomial,
exponential or sinusoidal. The latter are of particulagiiest for Fourier analysis.

7.1.3. Radial Basis Function network

In order to realise the linear approximation of the Q-fuoictand because of its excel-
lent generalisation ability, we decided on a Radial Basisckion network (RBF-NN)
[Orr 96], which is described in the following.

In general, an artificial neuron (see Figure 7.1) consistthde parts, namely input,
computation and output. The computational part can be dposed into combination
function which combines the inputs, the activation funetwhich calculates the result-
ing activity, and the output function which delivers the responding output. All these
elements must be defined for each neuron in the network.

s} :
- w1
I I |
1 - combination || activation || output [ Qutputs
1 - function function funct[on[__ (analeg, digital)
S—— Wa
L
: l wa
Inputs
{analog, digital)

Figure 7.1.: Artificial neuron
Each artificial neuron has three parts: input, computatiwh @utput. The
computational part can be decomposed into combinatiortitmactivation
function and output function.

RBF-NNs are three layer networks with a radial activationctions in the hidden layer
which can either be self-organised or fixed. Herein the mogufar set consists of
Gaussian functions with meanand standard deviationwhich in case of scalar input
can be computed as follows

hi(z) =¢" 7= (7.4)

This approach follows the idea of bounded input pursued lmnted output. The result-
ing activation for a one respectively two dimensional inpan be visualised as shown in
Figure 7.2 on the next page. Each neuron has its own activatitction which is only

unequal zero for a small part of the input space. This areaiteld by means of stan-
dard deviation. The resultant regions of limited size atkeddocal receptive fields and



88

7. Effects on learning progress

allow localised learning within the boundaries of such aaegThis dynamic allocation
of resources significantly reduces the computational effwrRBFs and, for that reason,
makes them suitable for online function approximation.siialso the reason for a much
better performance than in ordinary feed forward NN. Mogrdhe same property sup-
ports the switching between behaviours (as mentioned toseg.1) by adding an offset
to all input values and thus shifting the activation to aeotbart of the network, where a
diverse behaviour might be realised.

Figure 7.2.: Two (left) respectively three (right) dimemsal Gauss function with mean
0.0 and standard deviation 1.0

7.1.4. Afertile interplay of all three concepts

Combining the issues mentioned above, we linearly apprataitihe Q-Function by means
of a RBF-NN. In this context, the NN can be implemented as shiowFigure 7.3 on the
facing page.

The layers are fully connected and the number of neuronihittden layer is fixed. The
input vector, which is almost directly fed into the hiddeypdaneurons and the weights be-
tween the hidden and the output layer are represented fsgm equation 7.3 on page 86.
The base functionk;(X') stand for the activation of the hidden knot, the output isghe
timated Q-Value and is made up of the weighted sum of all attns.

Actually not all inner neurons are active, since only thosarons having an activation
unequal zero whose RBF-centers lie within the range of twymai around the current
input vector. In the special case of one dimensional ing activation of each neuron
can be directly read off from the Gaussian distribution azuad loe pictured in Figure 7.4
on page 90.

Another reason for choosing RBF-NN, is the fact that, sihegrtactivation is scaled with
distance from the centre, linear function approximatiomgsocalised receptive fields
with an activation factor between [0.0; 1.0] generalisadoethan discrete states. Note
that the discrete state representation can be considepatimlkcase with only one active
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41

hy(X) he(X)

Figure 7.3.: RBF-NN as linear approximator
The layers are fully connected. X is the input vector. Theghts between
the hidden and the output layer are represented;dyom equation 7.3. The
basis functions;(X) stand for the activation of the hidden neuron. The
output being the weighted sum of all activations is the estad Q-Value.

feature (thus the activation is either 1 or 0).

Since the current input has only local influence in RBF-neksponly the weights of
neighbouring features must be adapted in each learningdsapg fixed centres and sig-
mas, we just have to learn the linear scale factors of the RB#&tions. We chose those
centres according to the minimal, maximal and mid positioeeeh motor, since they are
the only relevant goal positions for standing up.

We decided to use this approach, since it merges the adeantddoth, RBF-NN and

Reinforcement Learning. Solutions that purely rely on tearal network part, have on
one hand the great generalisation ability combined witimogitcomputational efficiency,

but are highly non-linear and very difficult to analyse. R, the other hand, is well

formulated in mathematical terms and, for the external nleseit is quite easy to under-
stand what is going on in the internal process. Further,dba of representing complex
function as a linear combination of much simpler functiaa well established theory in
maths and physics.

In order to get quick results, we have the ReinforcementibhgarToolbox, which will be
described in the next section, take care of the learninggsac

7.2. Reinforcement Learning Toolbox

In this section, a framework for RL, namely the Reinforcetriszarning Toolbox (RLT)
[Neumann 05] will be described. We decided to use the RLTGesilon one hand, we
can easily extend our system for hierarchy and other futssggaments without having
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/\ contribution from A

N

: —\ confribution from B

En E Ep

Figure 7.4.: Activation of two neighbouring RBF-neurons AdaB in two dimensional
case
E4, Eg: mean of A respectively B
Ex: current input
Activation of neurons A and B, which are next to the curremiui) can be
directly read off from the respective Gaussian distributio

to redesign everything and since, on the other hand, it idadoka to anyone who plans
similar studies. So some decisions were met to fit the corafeépe RLT and not because
we think it was the best possible choice.

The RLT is a C++ framework for a variety of reinforcement tgag algorithms. Being
developed by Gerhard and Stephan Neumann from TU Graz,jlthésy is for the most
part designed for researchers with the intent of lettinguiber concentrate on the learning
problem itself and not on the implementation of the learringctions, policies etc.

At present the following learning functions are covered:-lahbda Q-Learning learning,
TD-Lambda V-Learning (TD learning also with continuous @iResiduals), Actor critic
learning, Advantage Learning, model based reinforcengamhing (prioritised sweeping,
value iteration), policy search algorithm (PEGASUS and QBQMDP) and VAPS.

Additional basic features are tools that support error gaden, hierarchical reinforce-
ment learning and logging of Q-function, policy or wholesgpies. A semi Marcov De-
cision Process (MDP) learning environment is alleged.

For reasons of reuse and complexity, the RLT Q-Learningdreach line of the action-
value matrix individually which means learning a separat@e® function for each action.
The value function V(s) of stateis defined as future discounted reward if the agent starts
in state s and follows the policy. In regard of the prefix “future”, the reward can only be
predicted and thus the expectatiBhR] is used. Herein, the discount factpiis used to
stress reward that are expected in the near future.
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m

V(s) = E[)_7"R(t + k)] (7.5)

k=0

This kind of value estimation, where the entire trajectargansidered beginning in state
s, is often referred to as Monte-Carlo-Method.

Using the RLT, it is possible to create one or more learningaib with diverse learn-
ing algorithms, reward functions or even different stasemBtisations, each of which can
learn simultaneously from the same training trial. The Umsex to provide the RLT with
an environment model, a set of actions and a reward funciiernatively, the user can
provide his own pre-programmed controller and then try tprione it with reinforcement
learning. One can choose to learn from single steps or wim$®ées. The current ver-
sion is 2.0.

Furthermore, the toolbox offers the possibility to use aairly approximating RBF-NN
or to introduce external neural networks (NN) from the Tdibhary. Torch is a BSD li-
censed machine learning library containing all sorts afieidl neural networks (includ-
ing convolution network and time-delay neural networksipgorting vector machines
for regression and classification, Gaussian mixture modedlen Markov models, K
means, K nearest neighbours, Parzen windows, bagging atxbast. For convenience
of the user Torch is included in the reinforcement learnowhiox, but can also be down-
loaded separately, the current version being 3.1.

In the next section, the experimental setup will be desdribe

7.3. Experimental setup

As already described, we utilise a linear Q-approximatiBgrRN. This section presents
the parameter setting, the model and the reward functiomolearning environments as
well as the interplay with ODE.

The clasDogModel encapsulates the model of MiniDog6M and provides the iaterf
to the RLT. Motor angles are continuous variables and thd@ipnsf the head is a dis-
crete variable. Further, it provides the reward functionvadl as functions to reset and
update the environment model. Thus it must be inherited {@&mvi r onment Model
andCRewar dFunct i on.

Each of the previously nominated motor primitives supphies action of the typ€Pr i -
m tiveActi on to the learning envirenment. Every action is available ichestep of
our learning environment.

As already mentioned, the learning progress itself is iblesto the user. In our RBF-
NN, the neurons of the hidden layer are called feature. Téemtres, which are the
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means of the Gassian activation function, are set on minijmearo and maximum of
each motor’s angular range. The standard deviation is leadtiiautomatically so that 2
centres have a distance of twice the standard deviationalCalate the activation of each
feature, we use the RLT8Si ngl eSt at eRBFFeat ur eCal cul at or, which means
that each feature has its own set of parameters. Using lineanpolation, only those
two features are active, which are the nearest to the cuimpat vector. Thus we get
2N active features, wher#’ is the number of input dimensions. Their activatibns
calculated as follows:

a;(s)
Ui(s) = =—— (7.6)
Zj a;(s)
wherei andj are indices of a feature of continuous state variablesaardenotes the
Gaussian activation function with mearand standard deviatian

a;(s) = e*% 7(%> (7.7)

As can easily be seen the activation is normalised with thetsi«en over the remaining
features and thus lies between 0.0 and 1.0.

For discrete state variables, the activation is very sirsplee only one feature is active.
The remaining features bear activation 0.0. As a resultntimber of features for con-
tinuous state variables multiply with the number of diseriatures. We imagine this
as having one set of continuous features per discrete v&loghe activation must only
calculated for those continuous state variables that lgelothe currently active discrete
feature.

To finally select an action on the basis of our Q-Function, psilen-Greedy-Policy with
e = 0.3 is pursued. This strategy selects the Greedy-Action whielama the action
with the highest Q-Value, with the probability of 0.7 and okes a random action with
a probability of 0.3. The learning rateis set to 0.4, discount factoy has a default
value of 0.95. Replacing eligibility traces with= 0.9 are used.\ is used to diminish
the responsability of past actions for the currently giveward respectively the current
TD-error. This problem is often refered to as credit assigniyproblem. A value of
0.9 means that past action have a strong influence on thentwtae. The attribute
“replacing” means that the trace will be reseted as soon asgraedy action is selected.
On one hand this might slow down the the learning progresesnearner has apotentially
short sighted knowledge base. On the other hand, it makegah®ing progress make
stable, since a learner, who gernerally assumes that tbdyeetion was taken, might be
confused be a resulting high TD-error.

The Q-function that arises from this combination of the @dhéng base class with replac-
ing eligibility traces and direct gradient calculation desummarised as follows:

Q(s,a) = Z Di(8) - Wi (7.8)
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where

3 (s) = L) (7.9)

dww

represents the gradient of the linear approximator. No#&t fibr all other actions

Q(S,Ch)

o, =0, with a;, ay € A\{a} (7.10)

Using a linear approximator, the Q-Function is not updateectly. Instead, we have to

update the weight of each feature separately. Regardingaheept of receptive fields

in RBF networks, computational effort is reduced and theaigps accelerated, since we
only have to update the active features in each step. In @ér tteese are only two. The
resulting update function is:

Awi g =a- (r,+7-maxQ(s; + 1,a') — Q(s¢, ar)) - e(w) (7.11)

with

QU511 a11) (7.12)

e(w)=A-y-eq(w)+ T

Herei refers to a continuous state variable and refers to the functions approximator’s
weight vector assigning a scaling factor to each featdog actiona. Aw is the weight
update. e denotes the eligibility trace which, in case of function apgpmation, is not
used to trace the recent state history, but to directly ttaeeapproximator’s weights in-
stead. Thus it is designated&s) instead ofe(w).

If a robot autonomously explores its environment, it is @ment to accomplish a max-
imum of tasks before returning to the charging station. &fuee and for reasons of
efficiency, we decided on a time limit. The learning processdgmented into episodes
of six steps. As mentioned above, each steps considtsmii cks ODE world steps.
An episode is claimed to have failed, when the simulated dbgtrneither stood nor ran
within the given six steps. Here “stand” and “run” are defiasdipright posture, gatill
with legs in mid position or gaiRunning

For running (as just defined) a reward of 150 is assigned témdéng the reward is 100.
To speed up learning by encouraging exploration, we algmedise negative reward, giv-
ing a penalty of -1, if the agent did not succeed within sipsteln all other steps the
reinforcement signal is zero. The resultant reward fumaso

150.0  running innth step

100.0  standing innth ste

R(n) = anding P (7.13)
—1.0 lyingdown andn. =5
0.0 otherwise
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withn = 0...5 being the step counter in the current episode.

The initial position for each learning episode is deterrdibg applying a random force to
knock over the running dog. The probability distributiomdze seen in Table 7.1 below.

1 2 3 4 5

Original | 0.39| 0.39| 0.15 | 0.07 | <0.01
Vertical | 0.44| 0.44| 0.12 | <0.01| <0.01
Round | 0.48| 0.52| <0.01| 0.0 | <0.01

Table 7.1.: Probability distribution for initial positiofirst row) in dependency of the
shape of the head (first column)

The overall learning algorithm is listed in Algorithm 5 belo

Algorithm 5 Learning algorithm
I f(steps==0)
nodel - >Reset the environnent nodel;
nodel - >refresh inputs for RBF-NN
i f(steps==0)
agent ->start new | earni ng epi sode;
agent ->performstep through NN,
nodel - >Read t he network outputs and set them for CDE
nodel - >Get reward
updat e wei ghts in NN
i f(steps < 5)

st eps++;

el se

{
nodel - >new M ni Dog6M
step = 0 ;

}

Throw over dog

Using the RLT, the only thing the user has to do is to providermnronment model, a set
of actions and a reward function. Moreover, the user has ®vdoything that is external
to the toolbox which means everything that is not directimagrned with Q-function,
RBF-NN and action selection. Access and control of ODE, fmtance throwing the
dog over, carrying out the selected action and collisiorectein, fall in this category.
The other steps are carried out automatically by the RLTutinocalling the respective
functions. Most of these methods are internal which meaeasusier can either access
them indirectly by setting some decisive parameters, ssdeaning rate, discount factor
etc or not at all. Some methods need to be overwritten by teearsl made available in
the model class. These methods are:

e vVirtual doubl e get Reward(CStateColl ection *ol dSt at e,
CAction *action, CStateCollection *newState)
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e virtual void getState(CState *state)
e vVirtual void doNextState(CPrimtiveAction *action)

e Virtual void doReset Model ()

First,get St at e updates the model state by collecting the respective irdbon from

the ODE environment. On that basigget Rewar d returns the reward gathered through-
out the last stepdoNext St at e passes the selected action on to ODE. Further, it sets
the reset as well as the failed flag to determine whether aoépihas successfully ended,
has failed or has not ended at dlloReset Model , which prepares the learning model
for a new episode, is triggered by the reset flag.

7.4. Results

In this section, we present the learning progress of theXi8tepisodes.

The success rate denotes the probability that the dog ig@bésume its way within six
steps. So failure here does not mean that the dog was unastienc up at all, but only
that it would need more than the given six steps. In the fahgwwe disregard initial
positions that occur with a probability less than 0.01.

For our environment model, we tried several configuratiostafe variables. First, we
took all motors as continuous and the position of the headszsede variable. Seeing,
that this results in an enormous state space, we substifugeiiont left and hind right
motor with a single discrete variable that indicates whefitest and hind or left and right
hand legs move in parallel. Aiming at a minimalistic desig®e, soon found out that the
agent even succeeded if it only knows the angle of the spin#&brs and the position of
the head. We stick to the latter configuration, since it ldadke fastest success.

The evaluation of learning progress of one shape of the hea@pendency of the re-
spective vocabulary is shown in Figure 7.5 on the next pagmtpage 98 below. The
evaluation of learning progress of the one vocabulary ireddpncy of the shape of the
head can be viewed in Figure 7.8 on page 99.

Comparing the results gained from learning progress andvelral diversity, we find
that a Behavioural-Diversity-Index greater than 10 gusras success in not more than
100 episodes, whereas in many cases vocabularies with a BWwé do not even reach
100% success at all.

Having a closer look at the final Q-Function, we still find adbtvalues equal to 0. The
reason for this is obviously that the morphology preventtage postures or that possible
postures are not reachable with the underlying vocabulBing latter is also the reason
why MiniDog6M with the original head cannot stand up from te# with vocabulary 1
and consequently cannot reach a success rate higher tHaas)s@en in Figure 7.5 on the
following page.
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Figure 7.5.: Success rate of original head over 200 episBdes greater than 10 guar-
antees success rate = 1.0 in not more than 100 episodes mhdrway not
be reached at all. MiniDog6M cannot stand up from the lefhwibcabulary
1 and thus cannot reach a success rate higher than 0.61.biffgxndex
greater than zero accelerates the learning process.

However, this is not the reason why the original head equipyth vocabulary 3 respec-
tively the round head equipped with vocabulary 4 do not edde&. Moreover it does
not explain why the round as well as the vertical head do ravhlat all with vocabulary
6. We already suggested that their I&P is a good indication. For most cases this is
not only an indication, but even the very reason, since fopdiproper sequence for these
configurations equals the notorious search for the proakmkiedle in a haystack. In cases
of moderateB D1, e.g. 8 or 9, the explanation should be found in an disadgastaearch
strategy through the state space. If the success rate iwed@ 0.9 and 1.0, the reason is
most of our runs already reached 1.0, but not all of them. €gusntly the mean success
rate is still less than 1.0. So far, it seems that that a K@l is necessary, but that it is
not a sufficient morphological explanation for the obsemwedormance differences.

Interestingly, a Flexibility-Index greater than zero h#dtedent consequences for different
morphologies. Actually, it was expected that this type ofifidty hinders the learning
process for all heads. This is because the goal posture mngerd unambigous and thus
the learner might be confused as the transitions betweeerdwstate and new state are no
longer injective.
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Figure 7.6.: Success rate of round head over 200 epigéfdsgreater than 10 guarantees
success rate = 1.0 in not more than 100 episodes otherwisey Inotdbe
reached at all. MiniDog6M cannot stand up from the left witicabulary
1 and thus cannot reach a success rate higher than 0.61.biffgxndex
greater than zero accelerates the learning process.

Considering the probability distribution of the initialbsgs, it becomes obvious that the
learning progress is the faster the less initial positiaessapported, but only for vocab-
ularies of type A. It can easily be seen that in case of Fléidndex of zero the round
head learns the fastest and the original head the slowesEl&ability-Index significan-
tely greater than zero, it is just the other way around. Theef progress for vertical and
original head can be observed with vocabulary 5, while ferrbund head MiniDog6M
performs best with vocabulary 1. To put it simple/x > 0 accelerates the learning
process for the original as well as for the vertical head jigbntrast to that decelerates
it for the round head.

This insight is especially astonishing, since the solwgifor round are for the most part
subsets of the solutions for the original head. Thus, it khba granted that the round
head learn slower, simply as its solutions are harder to &nd that further, their learning
progress should be quite similar, irrespective of the vatzly. Nevertheless, it seems
that this special type of flexibility outweighs the addit@beffort resulting from more ini-
tial positions. Anyway, this effect comes effortlessiyiis considered in the design phase
already.
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Figure 7.7.: Success rate of vertical head over 200 episBdes greater than 10 guar-
antees success rate = 1.0 in not more than 100 episodes ihdrway not
be reached at all. Flexibility-Index greater than zero kreges the learning
process.

As the search strategy for nongreedy actions is unfortlynate completely randomised,
the learning progress is additionally influenced by the tiocaof the single solutions
within the search space. This problem is one reason why weotalerive quantitative
results from these experiments.

In the next chapter, the gathered results are presentedraadti®ok on future assign-
ments will be given.
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Figure 7.8.: Success rate of all vocabularies over 200 dpso

Red line: Round head
Yellow line: Vertical head
Blue line: Original head

In case of Flexibility-Index = 0 the round head learns thédstsand the origi-
nal head the slowest. For Flexibility-Index > 0 it is just thteer way around.
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8. Conclusion and future work

In this chapter, the results gained from this thesis will lesalibed. Furthermore, fu-
ture assignments that directly hook up on our framework dt ageentitlements to the
MiniDog6M project are presented.

8.1. Results and implications

The goal of this thesis was to explore how the morphologicaperties contribute to
generating these discrete entities in the continuous sggpace. In doing so, we inves-
tigated how different vocabularies affect behaviouraledsity, robustness and learning
process. Robustness in this context means that the behswai@itolerant against changes
in morphology, environment and posture. For that purposegxamined six different vo-
cabularies, three different forms of the head and ninemiffeground configurations with
slopes of 0, 22.5 and 30. Further, we provided abstract, task and platform indepetd
measures to categorise and evaluate single motor primjtergire vocabularies and be-
havioural diversity.

8.1.1. Cheap design

We introduced the project of passive quadruped running tevdihat our design is in
deed “cheap” and that symmetrical gaits are to be favouredrergy efficient locomo-
tion. As a result, all of MiniDog6M’s gaits are symmetricébag one axis or the other.
MiniDog6M realises the principle of cheap design by meanssifig low friction feet
and springs for locomotion. With its simple sinusoidal cohér and the lack of sensory
feedback, MiniDog6M definitely undercuts the minimum regment of Scout 2.

Comparing videos of Kenken and MiniDog6M, one can see thatkke hops much
higher. This advantage of height simplifies moving on uney@und, but comes at cost
of more complex control. Talking about cheap design, Mirgbll's assembly and con-
troller concept are more fitting, if the roughness of thedieris reasonable. Though not
MiniDog6M, Puppy will eventually match equal jumping belay if its additional knee
actuator will be introduced.
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After all, we stabilised locomotion and increased manoahbiity by attaching additional
weights to the feet instead of improving control. This letman ecologically well bal-
anced design. This kind of unburdening the controller bypding forward a proper de-
sign, was introduced as morphological computation. Tha®™g6M project realises this
concept by means of its springy locomotion that manageseatera continuous move-
ment out of coarse-grained control.

8.1.2. Behavioural diversity

Despite the restriction to a distinct vocabulary, diversévdies can come up by means of
sequential combination of single primitives. The red tiyees in Figure 3.6 on page 49
only emerge because of dynamical interactions. Furthesnibe representation in Fig-
ure 3.6 on page 49 can be compared with Figure 2.14 on pagetBé sense that only
the critical points are decisive for success. The precistupes in between, which are
substituted with arrows, may vary a little.

Moreover, it was found that more behaviours come forward sipecial kind of flexibility
is introduced, which arises from the introduction of spetdan’t care” symbols. Dis-
covering the suitability of a multitude of complex sequentm different morphologies,
tasks and environments, we suggest to introduce a highelrdéhierarchy in order that
task-oriented implementations can make use of all tho$erdift solutions. It would then
be the charge of such a hierarchical higher level to choasbékt fitting variant (accord-
ing to one or more nonfunctional criteria) and to switch teaéternative behaviour if the
best choice does not work otit

Regarding the transfer capabilities, we find that irregpeadf the shape of the head,
those vocabularies with Flexibility-Index greater thanoz@/ocabulary 3 to 6) have equal
or more possibilities to traverse between the basic postiban the corresponding vo-
cabulary withF'lz = 0.

8.1.3. Impact on learning

Applying learning, we find that a Behavioural-Diversitydex greater than 10 guarantees
a success rate of 1.0 in not more than 100 episodes, wherealsularies with 8B D1 less
than in many cases do not even reach 100% success at allngrim@roper sequences for
configurations with a lowB DI equals the notorious search for the proverbial needle in a
haystack.

Among other things, it was interesting to see that a Fleitybihdex greater than zero has
different consequences for different morphologies. lete@ates the learning process for
the original as well as for the vertical head, but in conttaghat decelerates it for the
round head. In doing so, it somehow outweighs the additieffait resulting from more
initial positions.

1This can easily be achieved in RBF networks by adding a paranéas, which means an offset to all in-
puts, and thus shift the computation from one receptive fee&hother. Other models of hierarchical re-
current neural network can be found in publications of Juri &ad Rainer W. Paine [Tani 02, Paine 04].
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8.1.4. Robustness of behaviours

Introducing inclines, we showed the feasibility of the gadrknowledge in changing envi-
ronment without adaptation. This means no longer learniagséill being able to succeed
in new situations. The only thing a robot designer has tosltg care for enough behav-
ioural diversity. For this innovative robustness the tfansapabilities which we men-
tioned above are of particular importance. It was also shitsanparticular morphologies
are to be preferred for operating in unpredictable envireminsince the resulting behav-
iours are more robust. This ability is practically indepentbf the underlying vocabulary.

Talking about robustness we can say that the solutions éoottiginal and the round head
are also robust for applications in environment with slopesarious degrees and di-
rections. Those for the vertical head underlie a strangghubogical effect that causes
MiniDog6M to switch left and right hand solutions. This ipesially astonishing, since
the weight as well as the location of the centre of mass otticknn all versions. Consid-
ering further the compliance between the solutions of bfié heads, one would assume
that the respective agents behave similarly in changing@mwent for instance on in-
clines. Surprisingly, this assumption is not true. So fag aannot explain this strange
morphological effect, except that it is somehow groundetthé@shape.

Moreover, it was demonstrated that single solutions arl ¥at all initial positions of
one head (“position stable”), some for the same initial posj but of different heads
(“form stable”). Most surprisingly, some solutions are ewealid for all forms and all ini-
tial positions (form- and position stable). Further we fihdttit seems to be much harder
to create position stable solutions than to create formlestabes. So only the vertical
head supports position stability for all vocabularies. Ateresting fact is that sequences
that are stable in only one way involve motor primitives willexibility-Index greater or
equal zero, but that primitives belonging to form- and posistable sequences all have
Flexibility-Index zero.

It was further shown, that the behaviours that arise fromvogabularies, are also robist
against perturbations of posture. Hence, it was enouglotoge our learning model with
not more than the agent’s basic position and the angles ahihepinal motors.

8.1.5. Overall results

While it is obvious that the introduction of discrete acsalone reduces the complexity
of a learning task by avoiding online trajectory planningyas also testified that learning
and control processes are closely related to the morplealbgioperties of the executing
agent. As an effect of proper or improper shape and weightilalision, the given task
can be simplified or in contrast to that be complicated or éesruled out by creating sit-
uations from which it is impossible to solve the task at aHisleffect can easily exploited
if considered early in the design phase. Looking at toys atielinfrastructure can be
hidden under bizarre shaped plastic covers. If designeukpiyothe decorative shell can
serve as effortless enhancement of performance. Furthesigretr must also consider
the used material very carefully.

The overall ranking elaborated throughout the thesistisdigh Table 8.1 on the following
page. The numbers determine the rank of the respective utzegldepending on the
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shape of the head and the propety» and F'lx are ordered numerically. The higher the
value, the higher the rank. Note that for those measure ahigdlue is not a sign of
superior quality, since they only serve to categorise te8rdit vocabularies with respect
to their inner correlation and flexibility. Unfortunatelince ODE lies its main attention
on speed and not on accuracy, it was impossible to derivetigaiire results.

Vocabulary| Co | Flx | Learning BDI Robust-
Progress ness

OV ROV R|O VR

1 1 4 |6 3 1|5 4 44 5 5

2 2 4 |12 2 2|2 2 2|2 2 2

3 5 4 |5 4 46 6 6|6 4 4

4 3 1 /4 5 53 5 3|6 6 6

5 4 2 /1 1 3/]1 1 1/]1 1 1

6 6 313 6 6/{4 3 5/3 3 3

Table 8.1.: Final ranking of vocabularies in respect of rhoipgy and property
A value of 1 signifies the best, 6 the worst result in the rehpecategory (ex-
ceptions are”'o and F'lx which are ordered numerically without valuation of
guality). The overall ranking depends on how important aaesher considers
the respective property.

The ranking of the vocabularies 2 and 5 is almost constamfspective of property and
morphology. The overall ranking depends on how importargsgarcher considers the
respective property.

Since those vocabularies that sick out, whether in good frame mainly the same, there
seems to lie a hidden system behind our results. This gtraditeonclusion encourages
us to follow up our matter.

Our framework is just a small step on our way to understand mdtyre favours certain
principles, how most advantageous motor primitives candye/edd and to what extent
they depend on the particular morphology. Such insightsladvput researchers in the
position to design best possible robots with a maximum obilisa

Yet, being unable to derive clear quantitative rules at gast in time, a fundament
for systematic investigations of many different morphadsgvas established in order to
build a framework of benchmarks. In doing so, those landsaflexemplary morpholo-
gies serve to predict the performance of unexplored rolmdtsew robots, if they share
one or more of the morphological characteristics with ondetasis points which means
an agent that was examined earlier. This kind of parametectairy follows the example
of Bongard and Pfeifer’'s framework for evolved behaviourseéction 2.3. Merging both
methodologies would definitely enrich the basis for potdrttesign principles.

In the last section, we will elaborate several assignmemtsdr ongoing studies.
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8.2. Outlook

This project bears much more potential than can be invdstigm the timeframe of
this thesis. Some of the ideas that directly hook up on thesntiframework and/or
an MiniDog6M will be presented.

8.2.1. Future trends for MiniDog6M

Having a closer at the irregular motion patterns in Figuid 2n page 20, the robot seems
to tumble, but instead of falling down, it recovers and ean it way. Similar patterns
can also be found other walking machines with cyclic movamédhereas fully con-
trolled motions only reveal this type of pattern when fortamce the robot snags its foot
on a little stone or steps into a hole, we find that this irragty is symptomatic for the
springy locomotion of the “running dog project”. Since thest mentioned recovering
qualities from minor disturbances are an inherent propeiryscillation, similar effects
of self-stabilisation come forward in MiniDog6M’s simpleasoidal control. However,
this theory has to be proven in a subsequent project.

Another objective for MiniDog6M is to advance gait contraldshopping height respec-
tively width by adequate support of the spine. In additiearhing of speed variation con-
trol on different surfaces by means of amplitude, frequepbwse difference and maybe
offset variation should be put forward.

Moreover, further sensors such as pressure sensors, whiglend 04b, Fend 04a] etc
could be integrated in a subsequent project. Extending DiigbM’s sensory system
will help to better attitude recognition. Talking about temergence of behaviours, one
framework supporting this very principle is Distributivedaptive Control (DAC). DAC

is also called embedded artificial neural network, since itat trained in isolation, but
learns through physical interaction with the environmetgnce behaviours can emerge
in the course of proper physical design. This is possiblg betause of correlation be-
tween various sensory channels. Being know as the so caketlifidancy principle”,
this overlap in the information channels of the agent mugprioeided by different sen-
sor modalities. Thinking of behavioural diversity, addital sensor data could be used
as a basis to choose between the different behaviours. Anottion here is that the
guadruped learns how to use the twist motor and/or a cadlikeotcounteract falling.

In section 2.4.3, a mainly reactive, behaviour based achite with few planning com-
ponents for BISAM was recapitulated. This model consista afetwork of different
competences, each of which generates motor output as satssgeecific goal is not
met. These concurrent behaviours are merged in either bgrgogtion or by special
knots. This architecture is most compatible with our ideantéérmixing motor primi-
tives. Moreover, it also complies with the principle of gk loosely coupled processes
[Pfeifer 03b, Pfeifer 99]. “Loosely coupled refer to counglithrough the interaction with
the environment and in that sense is used as opposite oftdmgsioupling in a hierarchi-
cal architecture. Such an architecture also encouragestieegence of new behaviours.
We keep this architecture in mind for a later stage of ourgmipjwhen MiniDog6M has
to cope a larger variety of tasks.
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8.2.2. Conceptual research extending our framework

In order to derive more general design principles for megfinmotor primitives, it is
necessary to examine more variations. Therefore, we wilsiigate not only more vo-
cabularies, but also further morphological changes sudbragh or rest position of the
legs, changing shape and weight of head and rear etc. It vilguidce to investigate the
feasibility of the gathered behaviours on uneven or elastitace. Moreover, the experi-
ments must be extended to many different platforms, e.gedogmd hexapod.

As a reaction to significant environmental changes and nallegfes, the robot, even if its

behaviours are extremely robust, should be able to slightiyge the frequencies in order
to adapt to the new situation. Needless to say that, for effi@daptation, robust motor
primitives with least possible requirement of adaptatibnwdd be preferred. In order

to enable adaptation, we can either allow the controlletighhy change the respective

frequencies or we can provide our robot with a set of diffefesquencies which can be

exchanged with the original frequency is necessary.

Anyway, it is stillimportant for an autonomous agent to baipged with online learning.
Be it for administrative levels in a hierarchical architget, that learns how to chose from
a batch of available solutions or to acquire solutions fav tesks. Unfortunately a con-
stant learning rate hits one of the weak points of Q-Learnihge to a constant learning
rate unequal zero there will always be sub-optimal decssiddince the agent does not
always act according to the learned policy, it is possibée the policy will be unlearned.
So, for future projects, instead of our ordinary Q-learnwg suggest to improve the al-
gorithm according to “risk-free reinforcement learningbposed by Matthias Heger and
Karsten Berns [Heger 92]. The enhancements range fromreiron of parameters, over
insensibility towards quantification errors, provisiom ftate loops and constancy prob-
lems in state recognition to improvements concerning stsiit behaviour.

However, the evasion of the symbol-grounding problem githains an open duty in our
project. An important assignment herein is to examine thapmience introduced by
sensory-motor-coordination through analysis of senstiepes resulting from the differ-
ent vocabularies. For this purpose, a platform with manfetght sensor modalities is
needed. Furthermore, we would like to see if supplementmga's influence the perfor-
mance of our learning progress.

Following potential guidlines for motor primitive, a goodaabulary could be self-acqui-
red by a robot with a morphology that was optimised befordharhe designer would
just have to provide the agent with the desired weights fedifferent qualities e.g. high
BDI required, slow learning can be tolerated. One approachddmeitthe stepwise re-
finement of motor primitives. Bernstein [Rosenbaum 96] fbtimat in order to solve the
degree-of-freedom-problem, humans often freeze someegbthts and thereby reduce
their active degrees of freedom. Those joints are freed tip pvactice and thus serve to
optimise the learn behaviour. This idea can easily be tearesd to our concepts by sys-
tematically restricting joints to mid position, for ins@nrunning, as it is here, can later
be improved by support from the spinal motors.
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After all, it would be very interesting to compare the leamprogress of our approach
with that of other learning methods, such as actor critichlHkearning etc and thereby
introduce an additional dimension into our framework. Aegagher would then be in the
position to choose the most suitable learning algorithmsatting for his or her particular
robot.

The ultimate goal of this project would be the self-acquositof the (here predefined)
motor primitives, while building up a body image of its own.n®way of acquiring a
body image is by learning a model for the state transitiordeimendency of the executed
action. This involves not only the standing up task, but gtgocontrol of running behav-
iour. The robot is then in the position, that it can subséitwital and error with planning
in advance. Otherwise, it would be much more interesting lbdy image could (partly)
emerge and herein acquire the best fitting vocabulary.

Thinking it out, it would be possible to create a tool thapribvided with some parame-
ters, automatically computes a (near) optimal morpholagy eontroller for given and
emerging tasks.
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A. Glossary

Action Period

Duration respectively execution time of the given actiomréhNumTicks ODE step size)

Behavioural diversity

If a task can be solved in more than one way.

Behavioural-Diversity-Index BDI

Product of diversity factor and average number of solutfona given task

Cheap design

Parsimonious approach to designing robotic systems

Clusters of interest

Group of motors that serve the same purposes regardingpitstron and effective direc-
tion within the robot e.g. shoulder and hip motors for loctiom

Coherence-Index Co

Task an platform independent measure for the inner colwaland similarity to a special
root posture. Yields a numerical value between 0 and 1. (@tésra maximum unlike
posture. 1 means that all motors are controlled with the $esgeency and that the agent
ends up in root posture.)

Diversity factor D

Task and platform independent measure for the dissimyjlavithin a set of solution for
a given task. Yields numerical value between 0 and 1. (Theertte solutions have in
common, the higher the value.)
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Don’t-Care

Special stop symbol that causes the motor to remain in it®otipostion. Don't-Care
is used if a motor primitive does not consider one or more msotdhese motors can
consequently have an arbitrary position since their pmsis determined by the last motor
primitive that directly set it.

Ecological balance

Equal complexity of a robot’s task, morphology and congwoll

Feature

In the RLT, the neurons of the hidden layer are called feature

Form stable

Behaviours are form stable if they are tolerant against imalggical changes.

Flexibility-Index Flx
Ratio of Don’t-Care terms within a motor primitive and totehount of motors

Goal position

Motor angle after executing a motor primitve

Linear approximator

Mathematical method to approximate an unknown function leams of linear combina-
tion of a set of basis functions

Local receptive field

Speciality in a RBF-NN, the activation function (here: Gslus only unequal zero for a
small part of the input space. This region of limited sizeallexd local receptive field and
is bounded by means of standard deviation. The mean liegioahtre of such a region.

Motor primitive
Low level motor program assigning a controller frequenaygfach motor

Morphology
Shape, sensor placement, actuators and materials of a robot

Morphological computation

Reduction of controller complexity by exploiting morphgloal properties such as shape,
material, sensor placement etc.

Open Dynamics Engine

Free, industrial strength C++ library for simulating amizted rigid body dynamics in a
physically realistic environment



111

Position stable
Behaviour are position stable if they are valid for all iaigpositions

Q-Learning

Popular approach of reinforcement learning that tries tioage the future discounted re-
ward if an agent chooses the unexplored or suboptimal aatioistate s and then resumes
the policyn. The name is derived from this estimation function calleé@ction Q(s,
a).

Reinforment learning

Acquisition of a task fulfilling sensory-motor control skegy through trial and error. Dur-

ing the process of learning, the adaptive system undertakas actions that affect its en-
vironment. Hereupon it is reinforced by receiving a scala@ation of its actions. This

reinforcement signal is generally known as “reward”. Thafircement learning strategy
stresses outputs that maximise the received reward over tim

Reinforcement Learning Toolbox (RLT)
C++ based framework that provides a variety of reinforcertesarning algorithms.

Radial Basis Function network

Fully connected three layer neural network with radialation function (mostly the
Gauss function) in the inner layer

Robustness

Property of behaviours that are tolerant against changesoiphology (form stable),
environment and posture (position stable)

Root posture

Basic posture of a robot. This can be natural rest positi@special designated posture,
e.g. starting posture. (Here: all motors in position O refipely frequency 0)

Step size
In ODE, each integration step advances the current time lbyea gtep size.

Transfer capability

Ability to transform a given problem into another (basicdlplem e.g standing up from
the left into standing up from the right hand side.

Vocabulary

Set of motor primitives
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B. Vocabularies in this thesis

B.1.

Group A of vocabularies

Setl | FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: Ir 0 Ir 0 Ir Ir
AC1: 0 0 0 0 0 0
AC2: 0 —f 0 0 0 0
AC3: 0 f 0 0 0 0
AC4: 0 0 0 f 0 0
ACb5: 0 0 0 —f 0 0
ACB: —f 0 —f 0 —f —f
ACT: f 0 f 0 f f
ACS: ¥ 0 ¥ 0 —f —f
AC9: _f 0 —f 0 f f
Set2| FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: fr 0 IR 0 IR IR
AC1. —f 0 —f f —f —f
AC2: —f —f 0 0 0 —f
AC3: 0 0 —f 0 —f 0
AC4: 0 0 0 f 0 0
ACS5: f 0 f 0 0 0
ACB: —f 0 —f 0 —f —f
ACT: 0 0 0 0 0 0
ACS: f 0 f 0 —f —f
ACO: 0 f 0 0 0 0
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Set3| FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: fr 0 IR 0 IR IR
AC1: —f f —f —f —f —f
AC2: f f f f f f
AC3: ¥ —f 0 ¥ 0 0
AC4: f —f f 0 f —f
ACS5: 0 0 0 —f 0 0
AC6: f 0 f f —f —f
ACT: —f 0 —f 0 —f —f
ACS: 0 f 0 f 0 0
ACO: f 0 f 0 —f —f

B.2. Group B of vocabularies
Set4]| FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: Ir 0 Ir 0 Ir Ir
AC1: 0 0 0 0 0 0
AC2: x —f x x x x
AC3: x f x x x x
AC4. x x x f x x
AC5: x x x —f x x
ACS: —f 0 —f 0 —f —f
ACT: f 0 f 0 f f
ACS: ¥ 0 ¥ 0 —f —f
ACO: _f 0 —f 0 f f
Set5| FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: fr 0 IR 0 IR IR
AC1: —f 0 —f f —f —f
AC2: —f —f 0 0 0 —f
AC3: x x —f x —f x
AC4. x x x f x x
ACS5: f 0 f 0 0 0
ACS: —f 0 —f 0 —f —f
ACT: 0 0 0 0 0 0
ACS: f 0 f 0 —f —f
ACO: 0 f T T 0 0
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Setb| FrontRight| Bend | HindRight | Twist | HindLeft | FrontLeft
Run: fr 0 fr 0 Ir Ir
AC1: —f f —f —f —f —f
AC2: f f f f f S
AC3: ¥ —f 0 ¥ 0 0
ACA4: f —f f 0 f —f
AC5: x x x —f x x
ACG6: f 0 f f —f —f
ACT:| —f 0 —f 0 —f _f
ACS: x f x f x x
AC9: f 0 f 0 —f —f
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C. Assortment of transfer capabilities
and fastest sequences to stand up

The data below represents the behavioural diversity amdfigacapabilities of the simu-
lated MiniDog6M accommodated with vocabulary 4. Yet, thalgmsitions are assessed
directly which means without sinusoidal control function.

Back

3 0 -->basic position: 1
1840 -->basic position: 0 310 -->basic position: 1
2840 -->basic position: O 320 -->basic position: 1
3250 -->basic position: 0 340 -->basic position: 1
3280 -->basic position: 0 350 -->basic position: 1
3530 -->basic position: 0 370 -->basic position: 1
3540 --> basic position: 0 380 -->Dbasic position: 1
3830 -->basic position: 0 7 30 -->Dbasic position: 1
417 0 --> basic position: 0
4 250 -->basic position: 0 4 0 --> basic position: 2
4 26 0 --> basic position: 0 4 10 --> basic position: 2
4 270 -->basic position: 0 4 2 0 -->basic position: 2
4 370 -->basic position: 0 4 30 --> basic position: 2
4540 -->basic position: 0 450 -->basic position: 2
46 40 -->basic position: 0 46 0 --> basic position: 2
46 30-->basic position: O 4 70 --> basic position: 2
47 10 --> basic position: 0 4 8 0 --> basic position: 2
47 40 --> basic position: 0 7 4 0 --> basic position: 2
5160 -->basic position: O 8 4 0 --> basic position: 2
7310 -->basic position: 0O
7350 -->basic position: O 510 -->basic position: 4
7 4 2 0 --> basic position: 0 1510 -->basic position: 4
8140 --> basic position: 0 2510 -->basic position: 4
8 340 --> basic position: 0 47 20 --> basic position: 4
8 450 --> basic position: 0 5120 -->basic position: 4
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5130 -->basic position: 4 7 30 --> Dbasic position: 2

5140 --> basic position: 4 27 30 -->basic position: 2

5150 -->basic position: 4 37 30 -->basic position: 2

5310 --> basic position: 4 3810 -->basic position: 2

5410 -->basic position: 4 3820 -->basic position: 2
3840 --> basic position: 2

3240 -->basic position: 5 6 2 30 -->basic position: 2

37 40 -->basic position: 5 6 320 -->basic position: 2

4 2 30 --> basic position: 5 7130 --> basic position: 2
7 2 30 -->basic position: 2
7250 --> basic position: 2

Head 7270 -->basic position: 2
7310 --> basic position: 2

6 0 --> basic position: O 7320 -->basic position: 2

7 0 --> basic position: 0O 7 350 --> basic position: 2

8 0 --> basic position: O 7 380 -->basic position: 2

2 6 0 -->basic position: O 7 4 30 --> basic position: 2

2 70 -->basic position: O 7470 -->basic position: 2

2 80 --> basic position: 0 8 140 --> basic position: 2

37 0 --> basic position: 0O

380 -->basic position: O 160 -->basic position: 3

4 6 0 --> basic position: 0O 170 -->basic position: 3

6 1 0 --> basic position: 0 180 --> basic position: 3

6 3 0 -->basic position: O 4 7 0 --> basic position: 3

6 4 0 -->basic position: O

710 --> basic position: O 2410 -->basic position: 5

740 --> basic position: O 7 480 -->basic position: 5

8 1 0 --> basic position: 0O

8 30 --> basic position: 0
Ri ght

4 8 0 -->basic position: 1

8 2 0 --> basic position: 1 170 --> basic position: 0

8 40 --> basic position: 1 27 0 --> basic position: 0O

17 30-->basic position: 1 37 0 -->Dbasic position: 0

2470 -->basic position: 1 4 7 0 --> basic position: 0

2840 -->basic position: 1 540 --> basic position: O

3480 -->basic position: 1 6 30 -->basic position: O

4180 -->basic position: 1 6 4 0 -->Dbasic position: O

4 380 -->basic position: 1 710 --> basic position: 0O

4810 -->basic position: 1 7 40 --> basic position: O

4 840 -->basic position: 1

8120 --> basic position: 1 8 320 -->basic position: 1

8240 --> basic position: 1 8 230 -->basic position: 1

8 250 --> basic position: 1 7 480 -->basic position: 1

8 340 -->basic position: 1

8410 --> basic position: 1 240 --> basic position: 3

8 420 -->basic position: 1 1240 -->basic position: 3

8 450 --> basic position: 1 2420 -->basic position: 3

8 470 -->basic position: 1 2430 -->basic position: 3
2460 -->basic position: 3
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D. Training patterns for supervised
learning

The data below represents the learning base for superéagahg which is derived from
the soultions for vocabulary 4 which are presented in Appe@d Yet, the goal positions
are assessed directly which means without sinusoidal @dutrction.
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