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Abstract

One of mankind’s prevalent interests is to understand the principles of nature, above all
the enormous abilities of learning, adaptation and the widespectrum of design principles
of musculo-skeletal systems. Apparently, the solution cannot be found in just one com-
ponent, but is distributed over the whole system and arises from their dynamic interplay.

In many cases, humans and animals gain higher behaviours by combining well known
lower level components instead of learning from scratch. Additionally, we can find evi-
dence that even some animals entire locomotion repertoire is designed according to this
very principle, namely as sequential or linear combinationof low level motor primitives.
Recent advances also take for granted that all movements areintended as cyclic motion.
Needless to say that the use of oscillations makes linear combination straightforward.
The interesting issue considering artificial agents is how to generate a good basis of motor
primitives. Moreover, we hope that this approach will offerus a little more insight into an-
imal and human behaviour. In this context, we present the first in a series of experiments
that serve the development of a quality criterion for the design and analysis of meaningful
motor primitives. The first step towards such guidelines elaborates the impact of different
vocabularies on behavioural diversity, robustness of pre-learned behaviours and learning
process. The case study is a locomotion task of running and having the robot stand up
from a lying position. To investigate these ideas, the quadruped robot MiniDog6M is
controlled by a simple sinusoidal function for each of its motors. Further, we apply rein-
forcement learning to train a linear approximator estimating a Q-Function for a variety of
motor primitives, each consisting of a set of frequencies.

Keywords: Motor primitive, morphology, behavioural diversity, linear approximator, re-
inforcement learning, sinusoidal control





1. Introduction

In the course of this introduction, we first motivate the basic principles underlying our
research. On that basis we explain about our project and finally give a description of the
structure of this thesis.

1.1. Motivation
The overall goal of embodied AI and behaviour-based robotics is to provide insight into
animal/human behaviours and facilitate the improvement and development of new skills
in robotic systems.

While many animals reach enormous speeds, most of today’s mobile robots are capable
of slow locomotion only. The reason for this is quite simple:Each movement is static
and fully controlled. In contrast, if we have a look at nature(ourselves in the first row),
locomotion is anything but fully controlled. Biped walking, for instance, more or less
resembles forward tumbling. Gravity takes a major role in walking. Many more examples
can be found where physical interaction either within our body or between our body and
the environment substitutes active control. One example isthe existence of natural rest
positions in pairs of counteracting muscles. This posture is especially energy efficient
and it can effortlessly be reached from every other posture just by letting go. Further, we
notice that the elastic properties of our hands and feet helpus to passively adapt to uneven
surfaces. These are just two examples that everybody can experience in his/her own body.
This principle of exploiting the givens is applied in the modern approaches to artificial
intelligence, the so called new AI, embodied AI or behaviour-based AI.

Operating in natural environments, it is absolutely essential for mobile robots to enhance
adaptability. Flexibility is crucial. Drawing inspiration from nature as a first class designer
of adaptive beings, we find that humans often gather new abilities not from scratch, which
means acquiring new motions (or ideas) without a priori knowledge, but rather we gain
highly sophisticated abilities by combining well known lower level components. There-
fore, it is reasonable to assume a hierarchical behaviour representation where abstract
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Figure 1.1.: MiniDog6M

behaviours are represented as a sequence of lower level movement primitives. While
higher levels plan complex behaviours such as standing up, the detailed motor scheme is
accomplished in lower levels. Evidence for this distribution can be found in various ani-
mals, but as well in the human spinal cord which takes a major role in complex movement
generation [Tani 02, Bizzi 84, Feldman 80].

One of the best explored examples of movement primitives canbe found in the nervous
system of the frog [Giszter 93, Mussa-Ivaldi 94]. When special points of frog’s spine are
stimulated with electrodes, its legs automatically perform a fixed behaviour e.g. wiping.
Careful studies found only few of these point, which lead to the assumption that about a
dozen of those primitives are enough to produce a frog’s entire movement repertoire by
means of sequence and superposition.

Applying this principle to robotic environment, these movement primitives represent mod-
ules that are repeatedly found in complex sequences of motorpatterns. In contrast to other
approaches that rely on adaptive basic behaviours, the example of the frog suggests fixed
primitives. They ease learning in more than one way. On one hand, the learning process
is accelerated, since the agent acquires new behaviours as composite temporal ordered
combinations of low level primitives. This significantly reduces the search space of pos-
sible postures and trajectories. On the other hand, relyingon a set of basic behaviours
not only simplifies the generation of movement, but also facilitates its perception. The
existence of sensory-motor-integration in mirror neurons, which are equally active when-
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ever a motion is observed or executed, proves the theory thatbehaviour primitives are
simultaneously used to recognise and plan motions. Thus learning through imitation is
eased [Schaal 99, Kuniyoshi 94]because the robot identifieswell known patterns in new
temporal order instead of a complete series of angles for each motor. Moreover, when
confronted with an incomplete sensory input, prediction ismotivated through constant
classification of observed movements into its known repertoire. The latter is approved
by developmental psychology providing evidence for goal prediction in infants while ob-
serving incomplete or incorrect actions.

In addition, motor primitives are a simple and effective approach to solving the degree-
of-freedom problem. Since the Russian scientist Nicolai Bernstein was the first who for-
malised the difficulties arising from a physical body havingmore degrees of freedom than
the actual task, this is also known as Bernstein problem [Rosenbaum 96]. A plain exam-
ple to illustrate this issue is the position and orientationof an object in space compared
to the degrees of freedom of a human operator trying to grasp it. Whereas we need only
six descriptors to determine the position and orientation of an 3D object, there are infinite
possibilities for us to approach our target. The reason for that is that the number of degrees
of freedom of the human body is larger than the number of task descriptors. Moreover,
there is an exponential increase in the state space and thus in the number of actions that
can be generated in a movement system with many degrees of freedom. Bernstein also
emphasised that the state space is often smaller than suggested from the bare number of
joints or effectors, since morphology restricts the actualnumber of possible postures.

Regardless of the method used to acquire the skill, it is widely believed that all sorts of
movements seem to be designed as cyclic motions. Analysis ofanimal locomotion sug-
gests that these motions are generated by neural networks which are capable of generating
basic rhythmic motor activity. Recent advances found in a variety of legged locomotor
systems, for example, in the mud puppy (Heterocephalus glaber), the turtle (Testudinata),
the cat (Felix felix) and the stick insect (Carausius morosus), that the central network can
be decomposed into multiple lower level generators, each controlling a subunit such as
joint, segment, or muscle of the locomotor system [Büschges05]. Thus complex joint
angle trajectories are generated by composing oscillatorymovements with lower com-
plexity. To simplify matters locomotion is often the resultof superposition of different
cycle frequencies of the different muscles.

All these ideas and concepts motivated us to investigate theimpact of cyclic motor prim-
itives and morphology on locomotion control for a quadrupedrobot. The assignments of
this project are described in the next section.

1.2. Project description
This project aims at investigating the impact of motor primitives and morphology on lo-
comotion control for a quadruped robot.

The theory of having a basic set of motor primitives which canbe composed into a broad
and general movement repertoire has served as inspiration for behaviour-based control and
robotic models. Their development is one of the most recent trends in the field. While it
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is obvious that the introduction of powerful, adaptive motor primitives (and thus avoid-
ing online trajectory planning) is an appealing organizational principle, three questions
remain open:

1. What should the primitives in such a basic set be like?

2. How can those discrete entities be derived from morphological properties?

3. How can generic primitives obtain enough information forcomplex adaptive behav-
iours?

The latter can be answered quickly pointing out that the representation of a complex func-
tion as a linear combination of much simpler functions is a well established theory in
mathematics and physics. Parts of the other questions will be elaborated in the course of
this thesis by investigating the influence of morphologicalconstraints to motor control.
Combining the issues mentioned in section 1.1, we create a methodology that helps to
derive several design principles for meaningful motor primitives.

Behaving in natural environments with all its’ disturbances mobile robots may tumble
and fall from time to time. In order to fulfil its task nevertheless, the robot needs to first
recognise the mere fact that it fell and consequently be ableto stand up. Therefore, our
case study is a locomotion task involving standing up.

The hardware platform underlying my research is a quadrupedrobot developed by Fu-
miya Iida at the AILab of the University of Zürich. Followingthe principles of embodied
AI, the so-called MiniDog6M, which can be seen in Figure 1.1 on page 4, is able to move
quickly by employing plain hopping as found in nature. This capability is obtained by op-
timised design which means that most of the control is compensated by exploiting some
simple physics, such as the resilient properties of a springyielding a passive degree of
freedom in each leg.

The robot dog will be toppled by a random force applied to its head while running. Then
MiniDog6M shall get up and carry on its way. Contrary to approaches that rely on human
interference, this thesis tries to enable MiniDog6M to freeitself out of this situation. This
assignment is accomplished only by few robots - especially not among quadrupeds.

The first step in a row of experiments leading towards such guidelines examines the be-
havioural diversity of different vocabularies and morphologies and the validity of those
behaviours in environments with slopes. The second investigates the impact on the learn-
ing progress.

The next section give a short description of contents of our work.

1.3. Structure and description of contents
In this section, we roughly characterise the main points of each chapter of this thesis.
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After this introduction, in chapter two, the concepts underlying our research will be elab-
orated. First, we will give a few examples where physical interaction between the body
and the environment substitutes active control. Aiming at acost-efficient fast locomo-
tion, researchers engaged in passive running. We will shortly recapitulate the quadruped
model. Then, we will introduce the morphological and control concepts of the “running
dog project” which MiniDog6M is part of. Subsequently, we introduce a framework for
the investigation of morphological implications on evolved behaviour.

After that we will give a quick overview of the state of the art. First, we will intro-
duce Kenken and Scout 2 that serve to investigate compliant running with springy legs.
Then we explain two successful strategies for oscillatory movement that are embodied in
Tekken II and BISAM. For the latter, oscillatory movement isonly partially fitting, since,
its control strategy later changed towards a reactive architecture. The reasons for this
change will also be presented. Finally, the terminology andrepresentation of an assort-
ment of projects using motor primitives is overviewed.

At the end of this chapter, we will elaborate the entitlements to this thesis which result
from the concepts and projects presented here.

In chapter three, we will introduce the morphological and control concepts of our re-
search platform and subsequently provide a description of our experiments in the real
world which build the basis of our further studies. In these primary experiments with the
physical robot dog, several gaits and a pre-programmed standing up motions are captured.

In chapter four, the first set of motor primitives will be extracted out of these pre-program-
med sequences. Each primitive involves one or more motors. Further we will establish a
general means to evaluate them in regard of the frequencies they assign to the motors. On
that basis, we will work out several vocabularies, each of which being an assortment of
motor primitives that will be investigated throughout thisthesis.

In the second stage, starting with chapter five, a virtual model of MiniDog6M will be cre-
ated to enable further experiments with different morphologies which cannot be changed
effortlessly in the real world. Its implementation as well as the simulation platform will
be described in this chapter. In doing so, we will introduce the public library Open Dy-
namics Engine (ODE), which is used for physically realisticsimulation. The model of
MiniDog6M and its controller will be specified afterwards. Finally, the morphologies that
will be investigated in the course of this thesis will be selected.

In order to quickly overview the behavioural diversity, thestanding up sequences in chap-
ter six will be generated as trial and error combination of the underlying motor primitives.
This chapter describes the first row of experiments for the evaluation of the vocabularies
selected above. First, we establish a general means to compare the behavioural diversity
of different tasks or vocabularies. To get an intuition for the variety of legal standing up
sequences and to investigate how the shape of the head affects the behavioural diversity,
we will run a full search simulation. Performing the same full search in inclined envi-
ronment we will be able to overview how such changes affect the nature and amount of
solutions. This second set of experiments addresses an important characteristic of robot
control: robustness.
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Then, in chapter seven, we engage in learning, since trial and error at random is generally
not a good strategy for an agent to behave in natural environment. To get along in new
situation, structured search and learning is much more suitable. Therefore the support of
the learning progress is an important feature of a good basicvocabulary. In this chapter,
the design of the learning environment and the experimentalsetup is described. We ac-
commodate an artificial Radial Basis Function network for Q-learning with the different
combinations of head and vocabulary. The Reinforcement Learning Toolbox is used to
perform the learning process of this linear approximator. Finally, the learning progress of
each vocabulary in dependency of the shape of the head will beevaluated.

At the end, chapter eight will sum up the main points of our work and the results gained
from our experiments. Together with these concluding remarks, we will further give an
outlook on future assignments that directly hook up on the framework presented in this
thesis.

In the appendix we provide a glossary, some additional data on the behavioural diversity
and transfer capabilities gained from our experiments withthe simulated MiniDog6M.
Moreover we provide a set of training patterns for supervised learning derived from the
latter mentioned data set.



2. Challenges in legged locomotion

In this chapter, modern principles of robot design, legged locomotion, energy efficient
fast running and a framework to systematically investigatethe influence of morphology
on evolved behaviours are presented. Further, an assortment of related projects is sum-
merised. Finally, the resultant entitlement to this thesisis outlined.

2.1. Importance of morphology
In this section, the reasons why it is important to stress morphology in a robot’s design
process are given. Usually, morphology is used in the context of animal physiology. In
the broader sense, we copy this term into technical environments meaning the shape, ma-
terial, choice and placement of sensors and actuators of a robot [Pfeifer 99].

In the traditional approach to robotics, designers usuallypredetermine the morphology of
the desired robot and afterwards design a controller according to the given mechanical de-
sign. Further performance enhancements must thus be achieved through improvements in
control. This methodology has on one hand led to many successful and famous examples
of biped walking such as the Honda humanoid series, but on theother hand left unex-
plored the numerous fields that take advantage of optimised morphology and its intrinsic
dynamics. Recent advances in embodied AI proved the great influence of mechanical
structure, sensor and actuator placements on the performance of a robot.

Talking about the importance of morphology in locomotion, we come across the passive
dynamic walker [Pfeifer 03b, McGeer 90a, McGeer 90b] which can be seen in Figure 2.1
on the next page. This extreme example of parsimonious robotdesign is capable of walk-
ing down a slope without active control. Hence, the walker israther a mechanical device
than a robot (at least not in the common sense of a robot), since it relies purely on the
body dynamics of swinging legs and arms. As a result it is tiedto the small ecological
niche of medium inclines with flat surfaces. Though there is no actuation but gravity, its
walking looks very humanlike. However, for the robot to be applicable in natural environ-
ment, actuation and consequently control would be a necessity. Nevertheless, it is a great
example of cheap design. Cheap in this connotation refers toparsimonious robot design
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Figure 2.1.: Passive dynamic walker
A mechanical device that is capable of walking down a slope with no actua-
tion but gravity.

which exploits the physics of system-environment-interaction as well as the constraints
of the ecological niche. In doing so, the system’s inherent dynamics achieved by proper
design partly substitute active control.

Paul and Bongard [Paul 01] for the first time optimised morphology simultaneously with
a closed loop controller in a single process to achieve stable biped walking. Being one
of the first mechanical design decisions, they addressed theproblem of mass distribution
along the biped skeleton in terms of positioning motors and gears, which usually supply
the heaviest components in a robot.

Figure 2.2.: Simulated biped construction
This skeleton with six degrees of freedom is shown with (right) and without
(left) mass blocks attached to it. The position and the geometrical dimensions
of the discrete blocks is evolved together with a closed loopcontroller to
investigate the simultaneous optimisation of morphology and control.
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The simulated robot, which can be seen in Figure 2.2 on the facing page, has a waist
and two legs consisting of an upper and a lower part. The modelhas jointly six degrees
of freedom. It contains two haptic sensors in the feet and a proprioceptive sensor in each
joint. The joints are driven by torsional actuators limitedwith ranges of motion closely re-
sembling those of human walking. Because of its intrinsic capability of producing cyclic
dynamics, the controller was desinged as recurrent neural network. The aim was the de-
velopment of stable gaits by evolving an optimal controllertogether with the position and
the geometrical dimensions of discrete blocks and herewithstudy the effect of changing
mass distributions on the robot’s dynamics.

Three rows of experiments were investigated dealing with minor, mid range and major
reallocation of weights. Interestingly, the more stable gaits were achieved, the higher the
allowed degree of weight shifting. These results suggest that morphological changes can
indeed optimise performance.

Another interesting example is the Eyebot [Lichtensteiger00, Pfeifer 05], which can be
seen in Figure 2.3 on the next page. This project supplies evidence that the computa-
tional effort can be drastically reduced by optimised sensor placement. An evolved sensor
arrangement of artificial eye facets (here: light sensitivecells) automatically brings for-
ward a design where the optical sensors are more dense towards the front. Thus a navi-
gation task is significantly eased by compensating the phenomenon of motion parallax1.
This phenomenon can also be found in the compound eye of the housefly.

Further, we already mentioned the natural rest positions inmuscles and the self-adaptation
of our hand and feet.

The robustness, ease and flexibility of these solutions givean idea about the advantage
of exploiting body dynamics. Many different solutions can emerge naturally. Emergence
here indicates that behaviours which are not explicitly specified in the robot program,
come up as a result of agent-environment-interaction [Pfeifer 99, Pfeifer 03b]. This dis-
tribution of work is visualised in Figure 2.4 on page 13.

One of the advantages of the emerging of behaviours is the evasion of the symbol-groun-
ding problem. Traditionally AI works with internal symbol and their relations, but these
symbols are not grounded in the system’s understanding and interaction with its environ-
ment. A human user or developer automatically maps the symbols to the representing
objects. The relations between internal representations and their physical correspondents
as well as the possible resulting interactions are founded in our experience. We see a
car, we know that it’s the object’s name is “car” and that we can drive away with it if
we own the keys. If the concept “car” is already known, the mapping between the con-
cept and its properties can easily be achieved by a computer,whereas the first problem,
namely the identification of an object on the basis of given sensor input, is a really dif-
ficult problem. Neural networks by themselves are not capable of resolving it and thus
start from designer-defined high-level ontologies. Consequently, gaining suitable sen-
sor data through embedding the sensor(s) appropriately in the agent’s architecture is of

1The phenomenon of motion parallax can easily be experiencedby looking out of a moving vehicle.
Objects that are closer to the observer seem to move much faster than the ones that are far away.
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Figure 2.3.: Eyebot
Adaptive arrangements of light sensitive significantly reduces computational
effort by compensating the phenomenon of motion parallax

great importance. Being useless in classical computer science because it lacks system-
environment interaction, it is a central challenge to robotics [Pfeifer 99, Pfeifer 03a].

Talking about symbol grounding, yet another difficult problem has to be taken into ac-
count. The object constancy problem addresses the fact thatone object leads to set of very
unlike sensory patterns depending on viewing point and surroundings. Categorisation on
the basis of this almost infinite search area is truly a lot of hard work. The approach of em-
bodied cognitive science reduces the complexity of this task by designing an autonomous
agent that learns its concepts through active interaction with its environment - not only
through observing the world passively. The goal of these advances is the active creation
of well directed sensory inputs using sensory-motor coordination and thereby reducing
the input space. This attempt resembles natural human behaviour. It can be compared
with a human child that turns an object in front of its eyes at afixed distance and then
bites into it. This behaviour structures the input and by this means induces regularities
that significantly simplify category learning, an important precondition for intelligence.
Apparently finding the proper morphology and above all sensor position is fundamental
for generating stable input with sensory-motor coordination [Pfeifer 99, Pfeifer 03a].

The lesson that can be learned out of these examples is that not everything must be con-
trolled by the brain respectively the robot program. Physical interaction either within our
body or between our body and the environment can often ease oreven substitute active
control. The consideration of a morphological change can often be much more efficient
than improvement of the controller. This distribution of computational and control func-
tions between controller and morphology and environment iscalled morphological com-
putation.
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Figure 2.4.: Division of control in emergent behaviours
Emergence means that behaviours are not explicitly specified in the robot’s
program, but come up as a result of agent-environment-interaction instead.

The next section is on general and particular approaches to legged locomotion and passive
running.

2.2. Approaches to legged locomotion
In this section, general concepts of legged locomotion are dealt with. Further a passive
quadruped runner is presented and the “running dog project”, which our experimental
platform is part of, is introduced.

2.2.1. General concepts

Recent entitlements to increasing range of robotic applications have led researchers to the
limits of wheeled and tracked robots. For application on irregular terrain, adaptable lo-
comotion machines with many degrees of freedom have raised attention. Unfortunately,
adaptability comes at the cost of complex control and low energy efficiency. As it is es-
sential for (power) autonomous mobile robots to reduce their power consumption and at
the same time maximise the utilisation of their operationaltime, a lot of effort has to be
spent on energy efficient control of fast running. One of the biggest problems in fast lo-
comotion is the extremely short response time for the sensory feedback control loops that
are usually employed in walking robots.

Breaking up locomotion into a series of steps, each step passes through the same phases.
Statically stable walking on one hand needs first to release aleg, then to swing it towards
the desired position and finally to stabilise it again. Dynamically stable running, on the
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other hand, self-stabilisation achieves through proper body dynamics and thus lacks the
stabilisation phase. First, in the stance phase, all legs support the body weight, whereas
in the flight phase, the legs are significantly released or even lifted off the ground. Exam-
ples in which these phases can clearly be discriminated willbe presented in subsequent
sections.

Regarding the biological background (as already introduced in chapter 1), the ongo-
ing debate whether periodic movement is based on either reflexes (as in the frog) or
neuro-oscillators (as in the stick insect) seems to conclude with both in collaboration
[Luksch 02].

Here ’reflex’ means a goal-oriented behaviour tightly coupled to the strength and type of
sensor stimuli. This sort of behaviour is initiated by vegetative or motor processes. A
neuro-oscillator is a neural network that, irrespective ofthe current sensor state, produces
rhythmic impulses each of which kicks off a motor action. As aconsequence, reflexes are
much more situated and adaptive than neuro-oscillators. Robotic experiments [Ferrell 95]
compared three different control strategies found in insects by implementing them on a
hexapod robot. The results showed that CPG performs much better than purely reflexive
approaches. Recent advances revealed mutual influence on both schemes via sensory-
motor-coordination. While CPG dominate in general, reflexes take over when dealing
with disturbances. In doing so, the activity of single muscles or groups of muscles are
modulated and coordinated e.g. at spinal cord and brain stem,

Technically speaking, methods for legged locomotion control can be classified into zero
moment point based control (ZMP) and limit-cycle-based control [Luksch 02].

ZMP is the “extension” of the centre of gravity considering inertia force which means
that the centre of mass must always be above the bearing area of the body. Consequently,
each motion is statically stable. As the whole body motion must be considered, ZMP is
mainly controlled by an upper neural system. From the standpoint of energy consumption
this approach is effective only for posture control and slowwalking, since with every step
the large body mass must be accelerated and decelerated by actuators. Moreover, this
statically stable pace can lead to deadlock situations, where it is impossible to lift a leg
because this would lead to an unstable situation. These problems must be considered in
advance and therefore require complex planning mechanisms.

Superior energy efficiency and dynamic stability is achieved by limit-cycle-based control.
The term limit- cycle refers to the fact that the motions in time plane form a stable limit
cycle on the phase plane. This stability is achieved by alternating support of the legs. A
typical example for limit cycle based control is the passivedynamic walker, which was
already mentioned aforement. This category can be divided further into control by lower
neural systems (CPG and reflexes) and mechanic control by a spring-damper-system. Re-
grettably, the first subcategory is appropriate for not morethan medium-speed. The sec-
ond concept of compliant legs is realised in the “running dogproject” and accomplishes
high-speed running through self-stabilisation.

Contradictory to statically stable machines, dynamic locomotion with compliant legs sup-
ports higher speed and drastically improves mobility enmeshed in simplified mechanics.
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As a penalty, discontinuous storage and release of energy inthe passive leg compliance
is needed and, as a consequence, it is not longer possible to control the body motion
directly. Pioneering work in the field of effective uncontrolled running behaviour was
accomplished at MIT’s LegLab in Boston. Raibert et al [Poulskakis 05, Raibert 85] en-
gaged in springy legs of telescopic form and realised monoped, biped, and quadruped
robots capable of various gaits. They found that such quadrupeds, do not need active
posture control in bounding gait as long as their body’s momentum of inertia is smaller
than its mass times the square of the hip spacing. Moreover, They revealed passive trot,
gallop or bound is possible in both stance and flight phase if the system is provided with
the proper initial conditions.

Meanwhile, even legs with adjustable stiffness were suggested in order to adapt to differ-
ent surfaces [Ferris 98].

2.2.2. Passive running in quadrupeds

Aiming at a cost-efficient way of fast locomotion, passive running on robots with one,
two or four legs were investigated after the paradigm of the passive dynamic walker. Let
us briefly look at the quadruped version [PassiveRunning 05].

The assembly can be seen in Figure 2.5. In place of active actuation, three springs are
attached at each leg. Two of them symetrically connect the leg to the body, one on the left
and one on the right. The third attaches the foot to the lower end of the leg. This design
saves the leg swinging energy. In doing so, each leg has two passive degrees of freedom:
a rotational and a linear one.

Figure 2.5.: Schematic of the passive quadruped runner
This design saves the leg swinging energy. Each leg has two passive degrees
of freedom: a rotational and a linear one.



16 2. Challenges in legged locomotion

Creating a simulation, the leg mass is taken into account. Thus this approach covers
not only the body’s oscillatory pitch motion, but also reveals the swinging properties
of the leg. Since there is no specific running sequence designated, the propagation of
learning follows no specific order. Each step can be divided into four phases triggered by
touchdown or lift-off of front respectively hind legs whichmove in parallel. The transition
between these phases can be seen in Figure 2.6. In double support, which is always the
initial phase when a robot starts to move, all legs stand on the ground and support the body
weight. Performing a regular hopping behaviour, the forelegs should be released and lifted
off the ground, which would bring the robot in hind leg stancephase. After pushing to
robot forwards, the hind legs are automatically released which brings the robot in flight
phase. Next, in fore leg stance, the forelegs have reached the ground and start take on the
body weight. The initial phase is reached as soon as the weight is once again supported
by all legs. Depending on the particular gait, the phases maycome up in alternating order.

Figure 2.6.: Phases of passive running gaits
All resulting gaits have proven to be symmetrical, but unstable.

All passive running gaits found during the analysis of the simulation are symmetrical.
Unfortunately, uncontrolled running is secure for not morethan 25 steps. By the 26th
step, the quadruped is no longer upright, but has either canted over the forelegs (during
fore leg stance) or toppled over the hind (during hind leg stance). Thus all resulting gaits
have proven to be unstable. Actuation is needed to keep a quadruped upright.

2.2.3. The “running dog project”
The challenge to biomimetic design aims at reproducing the number of passive joints,
dimensions of limbs, weight, properties and locations of muscles of natural systems.
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Aiming at a minimalistic, but still biologically plausibledesign for fast locomotion, the
“running dog project” was founded by Fumiya Iida in order to investigate a big variety
of morphologies. All its members, amongst others our research platform MiniDog6M,
comply to the same morphological and control principles [Iida 03, RunningDog 05].

2.2.3.1. Morphological concepts

Looking at nature, we notice that limbs comprise pairs of counteracting muscles (antag-
onistic principle), but that they also have natural rest positions. As a substitute, many
technical systems contain springs as artificial muscles. Springs qualitatively approximate
several natural properties of the muscle-tendon system, for example unidirectional actua-
tion, multiple passive joints moved by a single motor and nonlinear torque depending on
the angle of the passive joints. In addition, they are cheap,widespread and available in
many different variants such as size, spring constant and material.

One of those biologically inspired projects using springs is the quadruped Geoff, which
can be seen in Figure 2.7 and which was designed after anatomical studies of a canines
musculoskeletal system.

Figure 2.7.: Geoff in photo (right) and schematic (left).
Geoff was designed after anatomical studies of a canine’s musculoskeletal
system and is the first member of the “running dog project”

Its skeleton is approximately 750 mm long, 300 mm wide, 600 mmtall and made of alu-
minium. Geoff contains 28 rotational joints with one passive degree of freedom. The
rotation angles are mechanically restricted and capable ofsmall translational displace-
ment. A binocular active vision system with four servo-motors and two miniature CMOS
cameras are installed in the robot’s head. The red lines in Figure 2.7 depict the position
of the springs.

Geoff is the first in a series of quadrupeds articulating the “running dog project”. Thus
Geoff had many descendents that concentrate mainly on the design of adequate legs. The
underlying canine leg design is qualitatively shown in Figure 2.8 on the next page.Gas-
trocnemius PlanatarisandSoleusare muscles connecting the heel to thigh and shank. The
corresponding antagonists are not shown.
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Figure 2.8.: Schematic of a dog leg
Gastrocnemius PlanatarisandSoleusare pairs of counteracting muscles (an-
tagonistic principle).

The one robot, that embodies this leg model most closely, is Puppy which is shown in
Figure 2.9. Each of its legs is designed identically with independent servomotors in hip
respectively shoulder and knee. The motors are marked with an encircled cross in the
schematic. Two springs in each leg connect the lower part of the leg (heel) to the upper
(thigh) and the middle part (shank) and thus substitutingGastrocnemius Planatarisand
Soleusin Figure 2.8. So far the motors in the knees are fixed. Further, a flexible spine is
used in order to support far jumps and thus fast running. As wecan see, this is a great
example of cheap design.

Figure 2.9.: Puppy in photo (left) and schematic (right).
Its legs are designed after the schematic of a canine’s leg inFigure 2.8. Its
passive flexible spine supports far jumps and fast running.

After Puppy, many other quadruped were developed. Each is unique in its design, size and
material, but constructed according to the same principles. We show just a few example
in Figure 2.10 on the facing page without going into detail.

The most remarkable point is that the one on the left hand sidegets even along without
any spring at all. The springy property is provided by the elastic material of the legs. The
robot in the middle is MiniDog, the closest relative of MiniDog6M. The new aspect in
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MiniDog6M is the active spine that enables the agent to twistand bend. The exemplar on
the right has the identical leg design as MiniDog, but is realised with different material,
leg diameter and relatively sharp ends.

Figure 2.10.: Members of the “running dog project”
Left: The springy property is provided by the elastic material of the legs
Middle: MiniDog, a close relative of MiniDog6M, but withoutactuation in
the spine
Right: Identical leg design as MiniDog, but different material

2.2.3.2. Locomotion concept

The outstanding characteristic throughout the running dogproject, is that all the different
morphologies are controlled with the same simple controller. The approach combines high
speed, energy efficiency and robust yet simple control in a unique way. This is especially
remarkable in face of the great variety of morphologies, thefew degrees of freedom of the
legs and the lack of sensory feedback.

While most locomotion approaches need to distinguish stance and flight phase, the springy
legs need neither control for jumping nor for landing. This type of springy locomotion
requires neither task-level or body state feedback nor active control over the leg length, be-
cause it relies to a large extent on the self-stabilising property of the spring-mass-system.
Hence MiniDog6M’s (as well as the other members’) locomotion can be controlled via a
simple sinusoidal control law [Iida 04a, Iida 04b].

Though the resulting hopping behaviour is quite irregular,the average speed can be con-
trolled by means of frequencyα, amplitudeA and phase delayβ between front and hind
legs.

The resulting controller equations being in command of the servos are as follows:

Front/right hand legs:Motorvalue = A ∗ sin(w ∗ α) + offsetFront (2.1)

Hind/left hand legs:Motorvalue = A ∗ sin(w ∗ β + φ) + offsetHind (2.2)

Herew is an integer variable increased in each controller step, initialised with zero when
the dog robot starts moving. The decision on sinusoidal control was not at all arbitrary,
but biologically inspired [Seyfarth 02].
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Figure 2.11 gives an impression of the motion sequence of therunning robot’s legs.
Though captured from Puppy, a close relative of MiniDog6M, the (ir-)regularity is repre-
sentative for all members of the “running dog project”. Puppy served to investigate speed
control and the influence of friction.

Figure 2.11.: Motion sequence of the Puppy’s legs
Its (ir-)regularity is representative for all members of the “running dog
project”.

As we can see the running dog project is a great example of ecological balance, cheap
design and morphological computation. Ecological balancemeans equal complexity of
a robot’s task, morphology and controller. The overall concept of sinusoidal control
is implemented in all members of the “running dog project” and even in an artificial
fish [Ziegler 05, Pfeifer 05]. For detailed information on self-stabilisation, speed control
and the influence of friction, please refer to Fumiya Iida’s work [Pfeifer 03b, Iida 04a,
Pfeifer 05].

In the subsequent section, a methodology to examine how morphological properties influ-
ence evolved behaviours is introduced.

2.3. Isolating morphological effects on evolved behaviour

As already mentioned, Paul and Bongard investigated the optimisation of biped weight
distribution simultaneously with a closed loop controllerto achieve stable walking, but,
generally speaking, little effort was spent to identify themorphological properties that
make an agent suitable for a given task or controller design.An outstanding example for
such investigations in legged locomotion will be presentedin this section.

One of the sparse systematic investigations was performed by Lund et al who showed
a correlation between body size, wheel base and sensor rangeand the performance of
wheeled locomotion [Lund 97]. Having biologically motivated systems and thus legged
locomotion in mind, the work of Bongard and Pfeifer is much more relevant for us
[Pfeifer 03b].
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They engaged in comparing evolved locomotion for ten leggedagents which are shown
in Figure 2.12. Irrespective of the particular body structure, each of the robots has an
identical sensory system, actuation and controller design.

Figure 2.12.: Evolved locomotion for ten different morphologies
Quadruped and hexapod locomotion is especially stable, fast and easy to
evolve. Regarding evolved control with neural networks, the performance of
other agents can eventually be predicted comparing them to the ones above.

All of the agents are controlled by a partially recurrent neural network. The input layer
receives input from four touch and four angle sensors. The output layer sends commands
to eight one degree of freedom torsional motors. Input, output and hidden layer are fully
connected. In addition, the hidden layer is fully recurrently connected. All weights are
evolved using a fixed length, generational genetic algorithm. Each evolutionary run was
conducted using a population size of 300, and was run for 200 generations. At the end
of each generation, strong elitism was employed with an average of three point muta-
tions using random replacement. On that basis they tried to derive a general policy how
morphology can ease or complicate the evolution of behaviours for simulated agents.

Comparing the respective locomotion stability and speed, they found that quadrupeds and,
above all, hexapods are particularly good candidates for which to evolve locomotion based
on neural networks. Since the number and type of sensors as well as actuators are constant
across all models, the reasons for that must be found in the specific shape and mass. One
part of the explanation is a partial negative correlation between mass and performance.
Unfortunately, this is not a sufficient explanation, since the three best agents (agent 2, 3
and 6 in Figure 2.12) offend against this apparent principle. Furthermore, additional hid-
den neurons improved the performance especially of segmented agents with many similar
parts. Most of the agents achieved a relatively rhythmic gait during evolution.

Such a systematic investigation of many different morphologies could help to predict the
performance of new robots within this evolutionary framework, if the unexplored agent
shares one or more of the morphological characteristics with an agent that was examined
earlier. Consequently, it is important to explore further how the morphology and control
can be designed simultaneously in the process of evolutionary or ontogenetic develop-



22 2. Challenges in legged locomotion

mental processes2.

By now, methodologies were proposed that evolve complete agents [Bongard 03, Pfeifer 03b],
which means morphology and controller at a time, but these approaches are still quite re-
stricted to single tasks and non-arbitrary morphologies. Typically, those agents can be
composed of only few basic shapes, sensors and materials. Some of them still require
quite a lot interference from human designers. So far all agents designed by such an au-
tomated design process are tested only in simulation.

In the next section, the so called “state of the art” is presented.

2.4. Related work
To provide an overview over the achievements in the field of legged locomotion, an as-
sortment of projects is presented which are related to our project on the subject of mor-
phological computation, compliant legs with springs, fastrunning, cyclic movement or
use of movement primitives.

2.4.1. Morphological relevance in standing up
A whole body dynamics biped of humanlike shape, size, mass distribution, mobility range
and strength was developed at AIST and later at the University of Tokyo. Aiming at
generality and openness, the robot with the average height and weight of a Japanese person
possesses 46 degrees of freedom [Pfeifer 03a, Kuniyoshi 04].

Through exploitation of natural physical dynamics and withsparse control at critical
points, the experimental platform shown in Figure 2.13 on the facing page is able to stand
up with roll and rise motion as observed in humans without assuming a particular task
or posture. The control was entirely open-loop. This approach is closely related to the
principle of cheap design as the programmer intuitively chooses some intermediate key
postures, arranges them in appropriate temporal order and let the natural dynamics take
care of the rest.

The actual movement was not self acquired, since the relevant constants are adjusted by
human operators to save time. Anyway, the more interesting point is the fact that they
found critical points where trajectories converge (compare Figure 2.14 on page 24) and
that only these points are decisive for success or failure ofthe overall standing up task. As
a result, the particular motions can diverge between critical points, but the completion of
the goal is more tolerant of small perturbations in the postures and dimensional parameters
of the robot’s body.

This is a great example of how a proper weight distribution can lead to good dynamics
and thereby ease the given task.

2.4.2. High speed running with springy legs
In this subsection, two compliant leg models with springs will be presented. Though both
are suitable for fast locomotion, they comply with differntdesign and control concepts.

2This concept of Hardware-Software-Codesign has for a long time been addressed by the wide field of
embedded system.
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Figure 2.13.: Schematic (left) and photo (right) of Kuniyoshi and his biped
A whole body dynamics biped of humanlike shape, size, mass distribution,
mobility range and strength that is able to stand up with rolland rise motion.

2.4.2.1. Empiric control of biologically inspired leg

Being inspired by biological standards, several parsimonious leg models for high speed
running were developed. Focusing on the geometric alignment and function of the muscle-
tendon system of canine’s ankle joint, the one-legged running robot Kenken was built in
1999 [FastRunning 05]. Figure 2.15 shows Kenken in photo andschematic.

Kenken’s leg design can be decomposed into three links. It uses two hydraulic actuators
as muscles and a linear spring as a tendon. As a result Kenken has two active joints in
hip and knee and one passive joint in the ankle that enables the toe to rotate freely on the
ground during the stance phase. The leg spring between the thigh and heel is attached
in parallel to the shank. This arrangement allows the robot to produce sufficient propul-
sion force by means of energy transfer from the knee during the stance phase. Absorbing
the impulse at touchdown, the leg spring stores the available kinetic energy as potential
energy for the next step. A knee extension contributes additional energy. During swing
phase, it enables passive retraction and extension of the leg by releasing the stored energy.

Using foot switches and six potentiometers at each joint, anempirical controller based on
the uncontrolled dynamics derived from the leg model was developed. Hence the robot
has succeeded in one-legged hopping experiments proving that this leg mechanism is in
fact effective for running. The induced motion sequence is depicted in Figure 2.16 on
page 25. Whereas the simple controller function employed inthe “running dog project” is
suitable for many different morphologies, Kenken’s controller was designed empirically
based on analysis of the characteristic dynamics of the robot.
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Figure 2.14.: Roll and rise trajectories
The particular motions can diverge between critical points. Only these
points are decisive for success or failure of the overall standing up task.

As a direct extension of Kenken, a planar biped robot named Kenken II was developed to
realise not only hopping, but also biped walking and running.

2.4.2.2. Cheap running with teleskopic joints

Another highly non-linear quadruped project utilising a compliant leg design with springs
is the Scout 2 in Figure 2.17. It is the first power and computationally autonomous
quadruped robot that achieves compliant running with a linear spring forming a tele-
scopic joint and only one actuator per leg for rotation in thesagittal plane [Poulskakis 05,
Buehler 00].

The torso contains the computer unit, the I/O boards and three batteries. The front and
hind hip assemblies include two additional batteries, the DC motors, PWM amplifiers,
gearboxes and pulleys for actuation.

Two controllers realise a PD algorithm and command the DC motors independently for
front and hind legs. By simply controlling the constant desired hip torque during stance
and the constant desired leg angle during flight phase, full mobility with energy effi-
cient stable velocity control up to 1.2m

s
is reached. Therefore the controller requires

touchdown/lift-off detection and local feedback of the legangles relative to the body pro-
vided by leg potentiometers and motor encoders. The linear potentiometers measure the
displacement of the lower leg with respect to the upper leg inorder to distinguish stance
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Figure 2.15.: Kenken in photo (left) and schematic (right)
The leg spring between the thigh and allows the robot to produce sufficient
propulsion force by means of energy transfer from the knee during the stance
phase. Absorbing the impulse at touchdown, it stores the available kinetic
energy as potential energy for the next step.

Figure 2.16.: Kenken’s motion sequence

from flight phase. The angular displacement of the motor shaft is measured by incremen-
tal optical encoders. The controller is structured in two hierarchical levels and can be
parameterised for each leg individually by motor torque, speed slope, maximum torque,
touchdown and sweep limit angles. Here, the touchdown angles are needed to achieve
cyclic motions. Each controller cycle is divided into free rotation, position control and
velocity control.

In 2003, Scout 2 featured the simplest running control algorithm and the simplest me-
chanical design.

2.4.3. Generation of rhythmic motion sequences

Various experiments showed the suitability of central pattern generators (CPG) in combi-
nation with peripheral controllers to accomplish periodiclocomotion. The CPG is often
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Figure 2.17.: Scout 2 (in photo and schematics)
Scout 2 featured the simplest running control algorithm andthe simplest
mechanical design employing a telescopic joint with a linear spring and only
one actuator per leg.

modelled with a neural oscillator consisting of two mutually inhibiting neurons, which
was originally designed to characterise the alternating activation of flexors and extensors
in a cat limb [Kimura 00]. As will be demonstrated, rhythmic motion sequences can also
be induce by a distributed control scheme.

2.4.3.1. CPG based control

The subsequent example introduces a quadruped that employslegs with springs con-
trolled by a neural oscillator network whose frequency matches that of the spring-mass-
environment-system oscillation to achieve dynamically stable motion. Tekken II [Kimura 04,
Kimura 03, Kimura 01, Kimura 99], which is shown in Figure 2.18 on the next page, is
a quadruped, self-contained robot that is capable of walking in outdoor natural environ-
ment. With its design based on biological concepts, Tekken II realises robust medium
speed walking on irregular terrain and fast trotting on flat terrain.

Tekken II has a hip pitch joint, a hip yaw joint, a knee pitch joint and an ankle pitch joint
on each leg. Whereas the latter can be passively rotated, theothers are activated by DC
motors. To support locomotion, a hard and a soft extensible spring were attached between
the lower limb and the long foot. The hard one is needed for shock absorption and reuse
of the kinetic energy. The other one keeps the angle of the ankle joint constant during
the flight phase. This spring-damper system is controlled bya PID controller for each
joint. The passive hip knee joint can change the mechanical stiffness of the spring-lock-
mechanism between the stance phase and swing phase. In orderto measure the body pitch
and roll angles, two rate gyroscopes and two inclinometers are mounted on the body. The
direction in which Tekken moves can be changed by using the hip yaw joints.

Tekken II’s neural system is modelled by numerous levels of CPGs, reflexes and re-
sponses. Here ’reflex’ is defined as joint torque generation and ’response’ means mod-
ulation of the CPG’s active phase, both as response on sensory feedback. Using CPG,
each gait is described as stable oscillations of a robot-environment system. The transi-
tion between two gaits is achieved by modifying a few parameters in the neural oscillator
network, which keeps these oscillations steady.



2.4. Related work 27

Figure 2.18.: Tekken II
Tekken II is capable of dynamically stable walking in outdoor natural envi-
ronment by employing a neural oscillator network whose frequency matches
that of the spring-mass environment-system oscillation.

Though Tekken II and the “running dog project” comply with different control methods,
both of them use legs with springs and oscillatory control for successful dynamically sta-
ble locomotion. Tekken requires a highly complex controller and therefore reaches much
more precise motions. Unfortunately, Tekken II can only stand up from a single prede-
fined posture, namely lying back in an upright posture with the feet stretched towards the
front.

2.4.3.2. From CPG to emergence of rhythmic gaits

The biologically inspired walking machine BISAM3 [Luksch 02, Ilg 00, Ilg 99, Ilg 98]
implements a control architecture for high numbers of degrees of freedom. Adaptation
and optimisation of different stable mammalian locomotionbehaviours are accomplished
with the coupling of different control levels.

BISAM, which is shown in Figure 2.19 on the following page, is70 cm high, weighs 23
kg and consists of a main body, four identical legs and a head.The body as well as each
leg consist of four segments connected by five rotary joints driven by DC motors and ball
screws gears. The sensory system is equipped with three component force sensors in the
feet along with inclinometers and angle velocity sensors inthe body.

In a first approach, optimised adaptation is attained by online reflex learning with an actor
critic algorithm and a self-organised RBF-network for function approximation. The motor
actions are generated by the output of the oscillators that directly and indirectly integrate
sensor information. Depending on the current sensor state,reflexes and higher level be-
haviours can add offsets or even actions to the oscillator output to adapt or even dominate
it in order to ensure the security of the robot. In contrast tothe “running dog project”,

3Biologically Inspired wAlking Machine
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Figure 2.19.: Biologically inspired walking machine BISAM
Adaptation and optimisation of stable oscillatory mammalian locomotion
is accomplished by coupling and superimposing of movement primitives
selected from different behaviour based control levels

BISAM’s control architecture has to distinguish stance from flight phase and as a result
switch between two elementary oscillators that model the respective CPGs for either one
or the other phase. Consequently, the controller can easilyextend the swing phase due to
delayed switching between stance and flight plane. Such a possible increase of the step
length becomes necessary, e.g. when, after the regular steplength, the robot’s foot does
not touch the ground as its bearer steps into a hole. This approach guarantees robust yet
slow locomotion. Aiming at faster locomotion, the responsetime of the controller had to
be improved.

In view of highly dynamic environments, reactive control offers early enough reaction and
much more adaptability than CPG. Belonging to the general category of behaviour based
control, there is a close coupling between perception and action. Inspired by psychology,
neurology and ethology, the basis for behaviour based control was provided by Rodney
Brooks’ subsumption architecture [Luksch 02]. Here the controller tasks are not decom-
posed into functional blocks that stepwise extract an environment model and on that basis
create plans and appropriate reactions, but into behavioural competences instead. Unde-
manding behaviours or reflexes are implemented as simple stimulus-reaction-pairs. More
complex behaviours emerge through their hierarchical and sequential interplay. Each ba-
sic behaviour only reacts to relevant stimuli. Concurrent behaviours must be coordinated.
Higher levels can change the output and variables of lower levels, while lower level know
nothing about the existence of higher levels. Thus the architecture can easily be extended
with further higher behaviours and the robot can even continue, if higher levels drop out
As a trade-off and due to the non-existence of a suitable environment model, it is not
possible for the agent to develop long-term plans. The subsumption architecture was suc-
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cessfully implemented in many robotic fields e.g. for navigation tasks in autonomous
agents.

For these reasons a behaviour-based control has been applied in a second approach to
BISAM. The architecture is mainly reactive, but with few planning components. Rhyth-
mic motion is no longer generated by a neuro-oscillator, butemerges from the interplay
of the basic components in even terrain.

Each behaviour component has an input to determine its relevance respectively activation
within [0.0; 1.0]. A value of 0.0 deactivates the behaviour,whereas a value of 1.0 leads
to maximum influence on the robot. Values in between the extremes can be used to mix
the motor primitives from different behaviours. In doing so, the activation expresses the
relevance of the behaviour respectively the correspondingoutput for the current situation.

After evaluating the current sensor input and after selecting an appropriate motor action,
each behaviour component gives an additional output expressing its satisfaction. Here
satisfaction means to what extent the current sensor state equals the desired world state of
the behaviour. This output is called activity and, again, this value lies within [0.0; 1.0].
Here, a value of 0.0 means that there is nothing to do for this behaviour, because its goal
has already been reached. A value of 1.0 means that the behaviour wants to change the
current state with every means it has. Note, that the activity must not exceed the behav-
iour’s activation.

All basic behaviours are arranged in hierarchical groups within a single network. This
model consists of a network of different competences, each of which generates motor
output as soon as its specific goal is not met. To merge all resulting motor programs, sup-
plementary knots are added to the network in which concurrent behaviours are combined
by either superposition or prioritisation.

BISAM achieves cyclic statically stable walking for securemovement in segments of
extremely rough terrain, arbitrary leg step sequence to overcome obstacles. With its reac-
tive control structure, it is further capable dynamically stable trotting. Rhythmic motion
was no longer generated by neuro-oscillators, but emerges from the interplay of the basic
components in even terrain. Regrettably, BISAM cannot stand up and thus makes posture
control and stable locomotion even more important.

2.4.3.3. Benefits in both approaches

Both approaches, BISAM and Tekken II, create their own non-linear dynamics exploiting
the strong interaction of neural system and the environment. Hence autonomous adapta-
tion under changes in the environment (e.g. adaptive walking on irregular terrain) and un-
der adjustment of the neural system parameters (e.g. gait transition or change of walking
speed) is induced without an internal representation of itsown body or of the environment.
Therefore, serious problems such as generating a body imageand an environment model,
autonomous planning, coping with discrepancies between planned and actual motion etc
can be avoided. Unfortunately, none of them is capable of fast running. For walking on



30 2. Challenges in legged locomotion

terrain of higher degree of irregularity, e.g. with holes and large obstacles, adaptation
based on vision would be a necessity.

2.4.4. Different approaches to motor primitives

Regarding the conceptual idea of motor primitives, severalother project, mainly in the
field of imitation learning, can be found that basically workwith the same concept, but
different representations and/or terminology. In this section, we provide a short overview
over an assortment of interesting projects.

2.4.4.1. Constitutional research

Arbib was the first who proposed the idea of movement primitives. In literature, this con-
cept also is referred to as movement primitives, motor schemas, motor programs, basis
behaviours or action units [Paine 04, Arbib 81].

Stefan Schaal [Schaal 99] defines movement primitives as a sequence of actions that can
accomplish a certain movement goal. He also stressed the importance of modular mo-
tor control in form of movement primitives in imitation learning of humanoid robots as
mentioned in section 1.1 on page 3. Herein a movement primitive can be as simple as
an elementary action or implement complete temporal behaviours. In that sense, primi-
tives can be formalised as form of control policy which results in a compact state-action
representation where only a few parameters need to be adjusted for a specific goal.

Later, he developed the theory of dynamic movement primitives (DMP) which are repre-
sented as non-linear differential equations in order to create smooth motions [Schaal 02].
The idea is to employ well-defined mathematical concepts such as attractor equations to
implement the basic behavioural patterns. The DMP’s attractor landscape can be modified
using statistical learning to match the detailed needs of the current situation [Schaal 04].
The idea of using non-linear dynamic systems as policies is the most closely related to
the original idea of motor pattern generators (MPG) in neurobiology. Further they imple-
mented this system of programmable pattern generators on a complex anthropomorphic
robot [Schaal 00].

2.4.4.2. Imitation learning

Combining perception and generation of motor primitives, real time 3D imitation was
achieved by Yasua Kuniyoshi et al [Kuniyoshi 94]. They proposed a method where a robot
learns reusable task plans by observing assembly tasks performed by a human operator.
In doing so, the agent splits up a continuous task into meaningful units. The identification
of those temporal segments is performed by concurrent recognition processes with active
attention control. For the overall imitation task, the system consists of three units: seeing,
understanding and doing. This approach is called “learningby watching”. The action
recogniser relies on an action model, an environment model and an attention stack. The
action model itself is a collection of knots representing the temporal structure. Currently,
the temporal segments, called “assembly motion”, are characterised by qualitative motion
features of the hand and the relative location of hand and object. Further, each partial
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action is characterised by a set of “assembly operations” describing changes or invari-
ants in the environment during the corresponding time sector. A task is then composed
of several segments that together cover the whole temporal extent of an assembly task.
As a basis for recognition, the design has to provide a hand-coded set of fixed templates
of partial task sequences. Though they use “reusable task knowledge or plan” instead of
motor primitive, it essentially means the same, except thatthe movement primitives can
be adapted by parameterising the given templates.

A similar approach was taken by Mataric et al [Mataric 98, Mataric 02]. Other than
“learning by watching”, complex behaviours are perceived as not only sequences but also
as superposition of basis behaviours. In doing so, they investigated alternative representa-
tions including convergent vector fields in joint and Cartesian space, impedance control,
interpolated joint-space control and CPG. Furthermore, they engaged in self-acquisition
of primitives on the basis of observing an exemplary set of simple movements. The con-
cept was tested on a physics-based humanoid simulation, twohumanoid avatars, AIBO
and a number of wheeled robots. Talking about representation, Mataric speaks of a set of
sensory-motor primitives forming a basis movement vocabulary.

Both approaches use fixed behaviours and function in the style of mirror neurons found
in primates.

2.4.4.3. Self-organisation

Jun Tani et al [Tani 02] started with a localised representation of motor primitives which
were self organised in a hierarchical neural network. Later, they switched towards a dis-
tributed representation scheme. Since this model is characterised by two levels of for-
ward models, it is called “forwarding forward model”. Each level was implemented as
Jordan-type recurrent neural network. Here, behaviours are perceived and generated as
combination of reusable pieces. Those sensory-motor spatio-temporal patterns are self-
organised in the lower level forward model. The “control neurons” in the higher level are
bi-directional connected to the lower level. By means of parametric bias, they are able to
switch between several primitives. With that concept, theyalso accomplished imitation
learning on the basis of those pre-learned primitives, while only the upper level neurons
were allowed to adapt. Further, they observed how the interaction between the two levels
enables adaptation if the target object is moved so that, while executing a grasping task,
the agent has to switch between two fixed behaviours in the middle of the execution.

Later, Rainer W Paine and Jun Tani [Paine 04] deepened the studies of this dynamic adap-
tation process. Using a similar concept, they decided on twolevels of continuous time re-
current neural networks. The two levels are connected bi-directionally. Again, the higher
level was allowed to switch between pre-learned primitivesrepresented in the lower level
network. Both levels were stepwise evolved for tasks of increasing complexity. Here a
navigation task to multiple goals in a maze environment wereachieved, if starting from
the same initial position. In both projects, the movement primitives remain unchanged,
once they self-organised in the lower level.



32 2. Challenges in legged locomotion

2.5. Entitlement to this thesis
The prevalent interest of embodied AI and behaviour-based robotics is to provide insight
into animal/human behaviours by building biologically inspired robots. This principle is
commonly known as “learning by building”.

Animals, for instance, lie down only in a few particular postures resulting from the con-
straints of the body. By taking physical interaction between the body and the environment
into account, the sensory state of the robot can no longer be arbitrary and thus is sig-
nificantly reduced. Providing a set of meaningful, adaptivemotor primitives, which can
be composed into a broad and general movement repertoire, isan appealing biologically
inspired strategy. Despite the restriction to a distinct set, diverse activities can emerge by
means of sequential or linear combination of single primitives.

Since trial and error at random is generally not a good strategy for an agent behaving in
natural environment, structured search and learning is much more suitable to acquire such
higher abilities. Reinforcement learning is a widespread means for autonomous agents
to get along in new situation. Making categories in the statespace is a crucial issue for
learning algorithms since the agent faces the problem of a enormous state respectively
search space. Hence the designers must find an appropriate way to cut down the state-
action space. While it is obvious, that the introduction of discrete actions alone reduces
the complexity of a learning task by avoiding online trajectory planning, another impor-
tant assignment is to further investigate morphological implications on robot control. The
support of the learning progress is consequently an important feature of a good basic set.

Due to the fact that ecologically well balanced robots require only control e.g. for loco-
motion, all the remaining resources can be used to develop higher abilities, e.g. learning.
Ecological balance is an important design principle for intelligent systems and means
finding a balance between the complexity of the given task, robot morphology and the
controller. In classical approaches to robotics, the complexity of the controller exceeds
that of the others by far. Anyway, it can be reduced by encouraging emergent behav-
iours. This can be achieved by exploiting morphological properties such as material and
mechanical design of the robot. In section 2.1 on page 9 this kind of unburdening the
controller was introduced as morphological computation. Since redundancy is a neces-
sity to the emergence of interesting new behaviours, this isnaturally a trade-off to cheap
design, which stresses parsimony. MiniDog6M should realise these principles as close as
possible.

Motor primitives as a parsimonious means of encoding a basicmovement vocabulary are
very effective for structuring a robot’s movement. Forminga set of fundamental agent-
environment-interaction, they build an elegant modular concept for motor control which
is driven by the kinematical and dynamic constraints of the motor system and represent
frequently executed moves in a robotic task.

In contrast to other approaches that put forward the developement of adaptive motor prim-
itives, the example of the frog, which was already mentionedin the introduction, suggests
the use of fixed primitives. The primitives found in its spinal chord only vary by adapting
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the power with which the motion is carried out to the strengthof the sensor stimulus. Nev-
ertheless the frog is an adaptive being. Its fixed behavioursare combined into sequences
or mixed by means of superposition. To follow suit, we decideagainst the use of adaptive
primitives. Further, we decided to use a localised instead of a distributed representation for
the primitives, since the primitives that are used throughout this thesis are pre-determined.

It is widely believed, that knowledge and behaviours that are acquired in one environ-
ment cannot be used if the setting changes. Adaptability is needed for the capability of
standing up in different terrain, e.g. with different slopes. In order to be able to react
to changing environment, the agent must constantly keep on learning. Regretably, many
examples showed that this kind of adaptation takes as long aslearning from scratch. We
contrast this common claim of steady learning: Changing environmental conditions may
prevent certain behaviours, but new behaviour may come up. Even if some of the pre-
learned behaviours fail, the robot might still be able to fulfil its task by employing another
behaviour. Being equipped with enough behavioural diversity, the robot may still be able
to perform its task after several unsuccessful trials. Therefore, it is much more interesting
to investigate the feasibility of the gained knowledge in changing environment without
adaptation. Discovering the suitability of a multitude of complex sequences for different
morphologies, tasks and environments, this means the evasion of online adaptation and
still being able to succeed in new situations by exploiting behavioural diversity.

The intention of this thesis is to systematically investigate if and how the influence of
morphological constraints to motor control makes learningfaster and simpler. The goal
is to provide a methodology to explore how the morphologicalproperties contribute to
generating these discrete entities in the continuous sensory space. Such a methodology
needs to investigate how different vocabularies affect behavioural diversity, robustness
and learning progress. Robustness in this context means that the behaviours are tolerant
against changes in morphology, environment and posture. Herefrom, guidelines and de-
sign principles for the developement of motor primitives aswell as the morphologies can
be extracted.

For this purpose, such a methodology has to settle the following claims:

• Primary experiments should reveal the potential of the robot dog’s sensory and lo-
comotion system. The result gained from these experiments will build the basis for
the subsequent investigations.

• In order to get an appreciation for possible vocabularies, afirst set of motor primi-
tives should be extracted out of well known standing up sequences.

• To derive quantitative results, abstract, task and platform independent measures are
needed to categorise and evaluate single motor primitives,entire vocabularies and
behavioural diversity.

• Different vocabularies, as well as different morphologiesand different ground con-
figurations are to be examined.
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In order to finalise this list, we will proceed as follows:

1. First, the morphological and control concepts of our research platform will be intro-
duced and subsequently several gaits and a pre-programmed standing up motions
and their feasibility of these behaviours on flattish, medium and steep slopes will
be elaborated.

2. Out of these pre-programmed sequences, the first set of motor primitives will be
extracted.

3. Further, we will establish a general means to evaluate them in regard of the frequen-
cies they assign to the motors. On that basis, several vocabularies will be worked
out, each of which being an assortment of motor primitives for the vocabularies that
will be investigated throughout this thesis.

4. In the second stage, MiniDog6M is transferred into simulation to enable further
experiments with different morphologies which cannot be changed effortlessly in
the real world.

5. On that basis, the morphologies that will be investigatedin the course of this thesis
will be selected.

6. After that, a general means to compare the behavioural diversity of different tasks
or vocabularies will be established.

7. In the first row of experiments for the evaluation of our vocabularies, diverse stand-
ing up sequences will be generated as a trial and error combination of the underlying
motor primitives.

8. The second set of experiments addresses the robustness ofthese sequences on in-
clines.

9. In the third batch of experiments, Reinforcement Learning is engaged.

10. At the end, the main results of our work will be summed up. Together with these
concluding remarks, future assignments that directly hookup on the framework pre-
sented in this thesis will be elaborated.

The deduction of appropriate measures is independent of theexperiments. Hence, their
developement can be considered coexistent. The dependenies which affect the time plan
of the project can be illustrated as follows:
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The time flow increments from left to right hand side of the graphic. Tasks that are
arranged one below the other can be executed in parallel. Thearrows depict the depen-
dency among them. If two task are dependent and despite of that aligned vertically, the
dependency is weakened into influence.

In the next chapter, the first item on the afore mentioned listwill be realised.
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3. Real world experiments

In this chapter, we will give details on the physical configuration and locomotion reper-
toire of MiniDog6M. Then we will provide a description of ourexperiments in the real
world which build the basis of our further studies.

3.1. Morphology of MiniDog6M

In this section, MiniDog6M’s mechanical structure, as wellas the choice and placement
of sensors and actuators will be presented.

As seen in Figure 1.1 on page 4, the body is 125 mm long, 73 mm wide, 30 mm high.
The complete dog weighs 194.9 g. The control area has a base ofapproximately 58·29
mm2, is up to 50 mm high, consists of power switch, acceleration sensor as well as the
interfaces for motors and PC (via RS232) and is applied to thehead, which results in a
significant frontal weight overhead of about 49.7 g.

MiniDog6M has six motors, one for each leg plus two forming the spine, which provide
an approximately semicircular trajectory addressed by values between 0 and 255. The
motors in hip and shoulders move the legs, the front spinal motor enables the dog to bend
(bend motor) and the hind spinal motor causes a rotational movement of the hind respec-
tive to the front (twist motor). The motors chosen for the MiniDog6M project are S-811
MG servos offering 33 Ncm at a rate of 0.09s

60◦
at an operating voltage of 6V. Each servo

weighs 19g on 29.8·12·29.6 mm3. Assembled with hot glue, they form the robot’s main
body. Sufficient power is supplied by an electric generator and stabilised by an accompa-
nying battery.

Since the centre of mass is relatively high in the original model, it should be lowered so
that MiniDog6M can cope with small disturbances without falling. With an additional
weight of 5 g attached at each foot, this decisive point is shifted towards the lower head.
The effects can be summarised in stabilisation of locomotion, ease of standing up and an
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increased rotational momentum enabling rolling over on itsback.

Being part of the “running dog project”, MiniDog6M is inspired by anatomical studies
of a canine. In contrast to the four-legged archetypes, eachleg is designed identically.
Every leg, as shown in Figure 3.1, has one active degree of freedom controlled by an
independent servomotor (cuboid in the schematic) and one passive degree of freedom
controlled by a spring (lightning-shape in schematic) connecting upper and lower leg.
The spring constant is 481. A spring-damper system is a common model approximating
the visco-elastic properties of a muscle. The weight of the legs is low with 7.8 g, since
the upper is made of a 5 cm long piece of plastic and the lower part consists of 5.5 cm of
aluminium. The latter enables MiniDog6M to slip over the ground very easily thanks to
the low friction sole of its feet.

Figure 3.1.: MiniDog6M’s leg design in photo (left) and schematic (right)
Red: active degree of freedom controlled by a servo motor (cuboid)
Green: passive degree of freedom controlled by a spring (lightning shape)

The dashed arrows in the schematic indicate the qualitativemovement of those parts of
the leg that are highlighted with the same colour. Despite identical design and identical
controller interval [0..255], the angular range of front and hind legs is uneven because of
unlike attachment to the correspondig servo. Additionally, the scope of the left front leg is
limited more than the other motors due to morphological restrictions. The angular range
of each physical unit is listed in Table 3.1 on the next page.

So far the sensory system is limited to a tri-axial capacitive accelerometer located within
the control area of MiniDog6M’s head. The sensor element consists of a fixed and a
flexible electrode. Due to mass inertia, the distance between the two electrodes changes
proportionally to the acceleration force acting on the flexible electrode plate. This change
in the plates’ relative position results in the proportionate change of the static capacity
between the electrodes. This deformation is detected by a capacitor on the opposing
split electrode. Following this simple principle is possible to measure static and dynamic
acceleration on all three axis within a single small, cost and energy efficient structure. We
employ the Star Micronics ACA 302 sensor [Micronics 05], which is shown in Figure 3.2
on the facing page, with built-in amplifiers. The sensor is supplied with 2.7 to 5.5 volts
DC. More sensors are planned.
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Unit Angular Range
Head bend down: 65◦ bend up: 62◦

twist right: 72.5◦ twist left: 73◦

Front right upper leg forward: 51◦ backward: 108◦

Hind right upper leg forward: 51◦ backward: 104.5◦

Front left upper leg forward: 34.5◦ backward: 59◦

Hind left upper leg forward: 65◦ backward: 92.5◦

Lower legs rest position: 60◦ max deflection: 90◦

Table 3.1.: Angular range physical units driven by servo or spring
Note that there is an imbalance between left and right hand legs.

Figure 3.2.: Acceleration sensor employed in MiniDog6
The sensor element consists of a fixed and a flexible electrodewhich makes it
possible to measure static and dynamic acceleration on all three axes within
a single small, cost and energy efficient structure.

This simple morphology with its minimal mechanical and electronic complexity increases
the reliability and robustness by significantly reducing the major sources of failure while
lowering the cost of the platform.

In the next section, MiniDog6M’s locomotion repertoire, which arises from its simple
sinusoidal control, will be presented.

3.2. Locomotion repertoire of MiniDog6M
Being part of the “running dog project”, MiniDog6M is capable of more gaits than just
running. They will be investigated in this section.

As MiniDog6M’s locomotion is controlled by a simple sinusoidal controller equation as
introduced above, everything we familiarised for the locomotion concept of the “running
dog project” is also true for MiniDog6M. Further, we enablednot only running behav-
iour, but also trotting and backing up. During running, front and hind legs are moved in
parallel, as are left and right hand legs during trotting. Both gaits can be used for forward
and backward locomotion.
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The hopping motion is provided by the servos in shoulder and hips which move the legs
back and forth. Forward movement emerges in combination with low friction soles of
feet and one spring per leg which, as passive joint, expands and contracts uncontrollably.
For optimal support of MiniDog6M’s front and hind legs, a phase delay ofπ is preferred.
Thereby, the evasion of one variable, namely phase delay, occurs as pleasant side effect
making the control even more parsimonious. The resulting controller equation for each
servo is as follows:

Front/right hand legs:Motorvalue = A · sin(w · f) + offsetFront (3.1)

Hind/left hand legs:Motorvalue = A · (− sin(w · f)) + offsetHind (3.2)

Herew is an integer variable increased in each controller step andinitialised with zero
when the robot dog starts moving. Whether a gait is used for forward and backward loco-
motion purely depends on the offset. If the offset shifts thecentre of the motion towards
the front, the robot will be pushed in that direction. This effect also holds for backward
motion. Regretably, running backwards is unstable, since,after just a few steps, the ba-
sic version of MiniDog6M cants over the small low friction feet. This misachievement
is based on the disadvantageous location of the centre of mass. So, without additional
weights attached to the hind of the robot, the way of fast backing up is only stable in
simulation.

In order to represent the robot’s locomotion repertoire, wedefined the enumeration data
typeGaits.

Gaits {Still, Trotting, BackUp, Running FastBack};
Index 0 1 2 3 4

We collected data from the accelerometer to see if it is possible to discriminate different
gaits and/or ground friction. In other words, if the acceleration values reflect the fact that
trotting is slower than running, that backwards means negative and forward locomotion
positive acceleration or that the same gait might be faster on ground with low friction than
it is on ground with high friction. The gained data of the relevant gaits are captured over
200 means of 10 sensor values respectively. The results are listed in Table 3.2 on the next
page for a rough surface with high friction and for slippery hard ground.

Regarding the expectation, we can see the tendency that for each axis backing up is less
accelerated than trotting and that running has the highest acceleration. Further we find the
tendency that all gaits are faster on low friction surface. Unfortunately these tendencies
are insignificant regarding the extension of the whole interval.

One of the most surprising facts is that locomotion does not need constant servo control,
but, thanks to the springs, manages to create a continuous movement out of discrete angles
and control operating at coarse-grained time steps. Other locomotion approaches need a
controller period significantly shorter than the period here (usually in the range of only
few milliseconds instead of here 1s). The trick is that the intrinsic dynamics of our model
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Gait 0 1 2 3
Axis 0:
Minimum: -2 -127 -124 -128
Expectation: 13 22 18 39
Maximum: 35 124 125 127
Axis 1:
Minimum: 15 -120 -120 -128
Expectation: 30 36 26 44
Maximum: 49 126 118 126
Axis 2:
Minimum: 14 -43 -67 -128
Expectation: 29 33 22 43
Maximum: 45 124 116 126

Gait 0 1 2 3
Axis 0:
Minimum: -2 -128 -128 -128
Expectation: 13 22 26 39
Maximum: 35 126 122 127
Axis 1:
Minimum: 15 -123 -41 -128
Expectation: 30 38 36 53
Maximum: 49 123 127 127
Axis 2:
Minimum: 14 -116 -38 -128
Expectation: 29 35 32 52
Maximum: 45 114 119 127

Table 3.2.: Sensor data of the accelerometer of different gaits and different surface condi-
tion
All gaits were tested on a rough surface with high friction (left) and slippery
hard ground (right)
The excepted acceleration is lower for backing up than it is for trotting. Fur-
ther the robot is less accelerated during trotting than it isduring running. The
excepted acceleration is higher on low friction than on highfriction surface.
Gaits and surface cannot be discriminated on the basis of acceleration since
these tendencies are insignificant regarding the extensionof the whole inter-
val.

take care of the rest. This cohesion is qualitatively pictured in Figure 3.3 on the following
page where the black line denotes the robot’s displacement from its initial position over
time. The red arrows record the sparse motor commands sent bythe controller. The
dashed line marks the intended leg trajectory.

We will not go into detail on the subject of gaits and speed variations, since the main focus
of the case study lies on standing up. First experiments on this will be described in the
next section.

3.3. Controller-based standing-up approach
To accomplish the task of standing up behaviour from arbitrary postures, we define two
subtasks, namely state recognition and standing up. How a classification of the robot’s
position is conducted, is described in the first subsection.Then our experimental results
derived from pre-programmed sequences are presented. Finally, the resulting controller is
explained.

3.3.1. Classifying the robot’s position
First, as a trigger for the standing up behaviour, the robot must recognise whether it is
standing or lying down. Furthermore, since it is not possible to stand up using the same
behaviour sequence from all positions, it is in our interestto find out on which side it fell.
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Figure 3.3.: Relationship between motor output (red arrows) and the robot dog’s displace-
ment from its initial position over time (black line). The trick is that the
intrinsic dynamics of our model take over in the meantime between the motor
outputs.

A classification of the basic positions can be achieved by using not more than the inexact
values provided by the acceleration sensor. These main positions are standing (Stand),
lying on the left side (Left), lying on the right side (Right), lying on the back (Back),
standing on the head (Head) and sitting (Sit). As the sensor is located in the head, these
positions only refer to the posture of the head.

We define an enumeration data typePositions to represent those basic orthogonal po-
sitions.

Positions {Stand, Left, Right, Back Head Sit};
Index 0 1 2 3 4 5

In order to achieve a reliable position classification over 200 means of 10 sensor values
respectively were recorded. The test data is shown in Table 3.3 on page 44 and illustrated
in Figure 3.4 on the facing page. For each axis the lines represent the interval for one
of the extreme positions. They are sorted top down as follows: Stand(black),Left (light
blue),Right(red),Back(green),Head(dark blue),Sit (orange).

For all initial positions the expectation is (almost) in themiddle of the interval. Looking
at the extention of the intervals, it becomes obvious that wecannot discriminate any in-
clined position between the extremes or different ground angles, since the intervals of the
orthogonal positions are too close to each other. So if a moreprecise resolution of the
position is needed an extra gyroskop must be acquired.

The classification of these positions is performed by a fixed guessing algorithm based on
expectations gained from the test data mapped in the six basic positions.

The estimation is based on the difference between the actualacceleration values and the
expectation of every position. The least difference is taken as first guess and the next



3.3. Controller-based standing-up approach 43

Figure 3.4.: Range of averages of ten accelerometer value (Respective limiting values are
listed in Table 3.2).
Inclined position between the orthogonal positions cannotbe discriminated,
since the intervals of the orthogonal positions are too close to each other. For
all initial positions the expectation is (almost) in the middle of the interval.

higher as second guess. If either estimates head position, the guessing process needs to
be refined. In this second step, we compare the current sensordata with the expectation
of the acceleration axis with the most unlike expectation for the positions being involved.

This classification of the head’s position is carried out by the proceduresensePosi-
tion. With the parameterstable, a programmer can choose whether the classification
is based upon the very last (stable = false) or the average of the last ten acceler-
ator measurements (stable = true). The procedure returns the resulting position.
The overall guessing algorithm is listed in Algorithm 1 on page 48 below.

As every robot that relies on sensor information, MiniDog6Mmust face the problem of
category errors. In the case of standing up, this is not a hardproblem, since the con-
sequences are not too severe. If MiniDog6M is running and suddenly assumes a lying
position, trying to stand up would cause the robot dog to falldown. If the robot is lying
down, but estimates the wrong position, it either starts running (if Standis assumed) or
tries to stand up and will most probably fail. The result in either case is that the robot
dog is still lying at the end. Consequently, the robot has to try once more. Moreover,
there is no risk for the physical structure of the robot, since its primitives are designed to
prevent harmful postures. The classification results basedon the averages of the last ten
accelerometer values is shown in Table 3.4 on the following page below. The rows are
labeled with the actual position and the columns with the estimated position. Each cell
contains the probability of the corresponding pairs. The main diagonal denotes the prob-
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Positions 0 1 2 3 4 5
Axis 0:
Minimum: -2 35 -39 -4 26 5
Expectation: 13 51 -23 12 3 23
Maximum: 35 67 -3 29 30 46
Axis 1:
Minimum: 15 -11 -14 -48 -13 -7
Expectation: 30 2 -3 -32 4 7
Maximum: 49 16 13 -14 25 26
Axis 2:
Minimum: 14 -18 -21 -53 -22 -12
Expectation: 29 -2 -8 -38 0 3
Maximum: 45 14 9 -18 22 25

Table 3.3.: Sensor data of the accelerometer in basic positions (Interval is visualised in
Figure 3.4).
Inclined position between the orthogonal positions cannotbe discriminated,
since the intervals of the orthogonal positions are too close to each other. For
all initial positions the expectation is (almost) in the middle of the interval.

abilities for correct classification, the others signify the probabilities for the respective
misclassifications.

Pest 0 1 2 3 4 5
Pact

0 0.980 0.000 0.000 0.000 0.015 0.005
1 0.000 1.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.980 0.000 0.020 0.000
3 0.000 0.000 0.000 1.000 0.000 0.000
4 0.029 0.201 0.000 0.000 0.601 0.169
5 0.023 0.013 0.000 0.000 0.134 0.830

Table 3.4.: Classification results on test data
Pact: actual position (rows)
Pest: estimated position (columns)
The main diagonal denotes the probabilities for correct classification, the oth-
ers signify the probabilities for the respective misclassifications.
If head position is estimated, the guessing process needs tobe refined.

It is understood that apart from the position of the head, theposition of the motors is also
of interest. Since they cannot be read directly from the servos, an efferent copy of the
motor command is stored in a global variable (though it is currently not needed).

The next subsection describes the standing up trajectoriesfound in first pre-programmed
experiments.
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3.3.2. Trajectories of standing up
During a variety of pre-programmed experiments, several standing up trajectories were
found. A model of those trajectories is illustrated in Figure 3.6 on page 49. The dots
marked with the basic positions represent the possible initial states.

The red trajectories indicate dynamic motions exploiting the body properties. In the upper
case, inertia is used to swing from right to left by rolling over on the back. In the lower
example, gravity pulls the dog down on its belly.

The dashed arrow marks gradual movement which means introducing four sub-goal po-
sitions between the current and mid position. The reason whythis humble way to slow
down the motion was considered, is that the robot dog cants over again if the legs return
directly this fast. This reduction is necessary only in thisspecial case because the uneven
angular range of the legs (and thus unequal starting points)produce unequal momentums
that do not outweigh each other. Reducing speed also means downsizing the momentums
generated during the move so that they can be absorbed by the dynamics of the body.

The afore mentioned imbalance of motor range is the reason that standing up from mir-
rored positions does not result in mirrored movements. Thus, for instance, a successful
sequence for standing up from the left cannot be transformedinto an equally successful
sequence for the right. The irregular diagram results from this morphological constraint.

In many cases, the directionality of the arrows can be revised, but, due to asymetrical
dynamics resulting from imbalanced motor range, this does not hold for all of them. Thus
rolling over on the back from left to right hand side is just asimpossible as the reversion
of the red arrows.

Anyhow, the selected set of trajectories, as shown in Figure3.6 on page 49, is certainly
incomplete, because neither static trajectories nor trajectories emerging from the dynamic
interchange (red transitions) can be fully overviewed.

The controller that implements these results is described in the next subsection.

3.3.3. Controller algorithm
For our locomotion task we decided on a simple cyclic controlstrategy. The dog runs
until it stumbles and falls. Then it stops the running motion, stands up and resumes its
way.

At the beginning - after setting up the serial communication- the dog is initialised by set-
ting all motors to mid position. After sensing the position,the respective action is carried
out. At the moment, this action is “running” as long as the robot remains in an upright
position or “standing up” otherwise.

A classification of the position on the raw accelerometer inputs takes place after each
controller step. To take misclassification into account, the running motion is only stopped
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after perceiving an assumed position different from ’Stand’ for more thantriggermax
times.

Since fixed behaviours such as the standing up trajectories in Figure 3.6 on page 49 require
a predefined starting point, the robot must adopt a distinct posture before “standing up” is
called. So first of all the robot must stop the hopping behaviour and bring the servos to
the initial position, if MiniDog6M’s sensors state that it is lying down. After stopping the
motion, a more reliable classification on the average of ten accelerometer measurements is
performed. The result triggers the appropriate routines for standing up from the respective
posture or running if ’Stand’ is assumed (due to current or earlier misclassification).

To assure that each motor’s goal position is reached, every controller signal (except dur-
ing running and trotting) is repeatedNumTicks times. A subsequent guess of the new
position proves success respectively failure. Measuring’Stand’ the robot will resume his
way, else another try is initiated from the current position.

As already mentioned, there are different solutions for most of the initial positions. At
present, the next step among several possibilities is chosen according to preset probabil-
ities. Therefore the robot will eventually be able to stand up even if a distinct movement
is blocked (for instance by an object), since after several attempts, it will end up in a be-
haviour that does not need to carry out the impracticable move.

The resulting algorithm is listed in Algorithm 2 on page 50 below.

The next section gives an insight into the robustness of our solutions in inclined environ-
ment.

3.4. Standing up in a sloped environment

In this section, the pre-programmed behaviours are tested on their capability to be tolerant
against minor, medium and steep inclinations.

First vital experiments with different ground angles showed that the robot dog can still get
up in territories with relatively steep incline, but only from particular postures. Anyhow,
the selected set of trajectories, as shown in Figure 3.6 on page 49, is certainly incomplete,
because neither static trajectories nor trajectories emerging from the dynamic interchange
(red transitions) can be fully overviewed. Whether the quadruped can stand up or not
depends purely on the position of the head. Due to its heavy head and the high centre
of mass, the robot fails even in flattish terrain if being in a disadvantageous posture. We
made efforts examining eight designated initial positionsin combination with three dif-
ferent ground angles. The qualitative results of ten trialsare shown in Figure 3.5 on the
facing page. Here ’+’ means that each of our test succeeded, none in case of ’-’ and
with alternating success if marked with ’0’.Anyhow, the selected set of trajectories, as
shown in Figure 3.6 on page 49, is certainly incomplete, because neither static trajecto-
ries nor trajectories emerging from the dynamic interchange (red transitions) can be fully
overviewed.
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Figure 3.5.: Successful standing up with different ground angles in ten trials.
Success or not heavily depends on position of the head.
+: Each test succeeded
-: No test succeeded
0: Some tests succeeded

Unfortunately, not all positions and ground angles can be marked with ’+’. Partly succeed-
ing combinations always arose from too high momentums whichin some cases overthrew
the quadruped after standing up successfully. In these special cases, slower movements
might help, but regarding combinations that always fail, a lower centre of mass or a higher
behavioural diversity would be much more promising.

In the next chapter, we will work out an assortment of motor primitives and further es-
tablish a general means to evaluate them in regard of the frequencies they assign to the
motors.
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Algorithm 1 Position classification withsensePosition
stable: Parameter (false: classification is based upon the latest;true: classification
is based upon the average of the last ten sensor values).
i∈{0, 1, 2}: Index of acceleration axis, j∈{0..5}: Position index
E(axis[i] for j): expectation of axis i for position j

1. if (stable)
initialise average[0], average[1] and average[2]

with average of next ten accelerometer values;
2. else

initialise average[0], average[1] and average[2]
with next accelerometer values;

3. for all j
count[j] =

∑

i=0...2 abs(average[i]- E(axis[i]
for j))

4. First_guess = k with count[k] = minall jcount[j]
5. Second_guess = n with

count[k] ≤ count[n] ≤ minall j\{n;k}count[j]
6. if (First_guess == Head)

if (Second_guess == Stand && count[Stand]==0)
for i = 1..2

temp = abs(E(axis[i] for Head) - average[i]);
temp2 = abs(E(axis[i] for Stand)- average[i]);
if (temp < temp2)
indication for Stand;

else
indication for Head;

if (more indications for Stand)
First_guess = Stand

if (Second_guess == Left && count[Left]==0
&& average[1] < critical value)
First_guess = Left

if (Second_guess == Left && count[Left]==0
&& for all i: average[i] < critical value)
First_guess = Back

7. if (First_guess == Head && Second_guess == Sit
|| vice versa)
if (abs(average[0]- E(axis[0] for Sit))

< abs(average[0]- E(axis[0] for Head)))
First_guess = Sit

8. if (First_guess == Head && Second_guess == Right
|| vice versa)
if (abs(average[0]- E(axis[0] for Right))

< abs(average[0]- E(axis[0] for Head))
First_guess = Right

9. return First_guess;
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Figure 3.6.: Standing up trajectories found
This set was found during a variety of pre-programmed experiments, but is
certainly far beyond completeness.
Dots: Possible initial states
Red trajectories: Dynamic motions exploiting the body properties
Dashed arrows: Gradual movement
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Algorithm 2 Standing up controller
Initialise random number generator
Initialise probabilities to select one trajectory

out of several possibilities
Initialise communication
Initialise MiniDog6M (set all motors to position 128)
While !(Program canceled) {
Position = sensePosition(true);
if (Position == Stand)

do
run();

while ((stop < triggermax) && !(Program canceled));
Gait = Still;

else
switch (Position) {
case Right:

if (probability < marginal value)
trigger one trajectory;

else
trigger another;

break;
case Back:

if (probability < marginal value)
trigger one trajectory;

else
trigger another;

break;
case Left:

if (probability < marginal value)
trigger one trajectory;

else
trigger another;

break;
case Head:

trigger standing up;
break;

case Sit:
trigger standing up;
break;

default:
run();

}
}
Close communication;



4. Generation and evaluation of motor
primitives

In this section, we will derive a first set of motor primitivesand establish an abstract task
and platform independent measure to categorise and evaluate them. In this context, six
exemplary vocabularies will be nominated for further studies.

4.1. Deriving a first vocabulary
In this section, a first set of motor primitives which is derived fromth real world experi-
ment will be worked out.

Analysing the pre-programmed standing up sequences, we findthat all of them basically
consist of nine distinct sets of motor positions as shown in Table 4.1 on the following
page. Each line represents one motor primitive each of whichcan be defined by the goal
positions of all motors. With goal position we mean the very position where a motor ends
up after carrying out the current motor primitive. A value ofzero denotes middle position.
The ’max/min’ notation refers to frontmost/backmost respectively rightmost/leftmost mo-
tor position. In ODE, these parameters are defined asdParamHiStop/dParamLoStop
for each motor individually. ’x’ designates “Don’t care”, which means that the respec-
tive motor is not considered in this motor primitive. “Don’tcare” can be thought of as
a special stop symbol which causes a motor to remain in its current position. Therefore,
the resulting posture is no longer determined only by the current motor primitive. The
position of the unspecified motors depends on the direct predecessor(s) of the currently
executed primitive. This means that their position dependson the last motor primitive
which explicitly specified and set these motors in the past. Consequently, the current mo-
tor positions are the result of mixing up two or more motor primitives. Thus the recent
history of selected components must be taken into account toget the current angles of all
six motors.

First of all, we have to adapt the original motor primitives to the principle of sinusoidal
control. Therefore, the parameter motorposition is substituted by frequency, amplitude
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FrontLeft FrontRight HindLeft HindRight Bend Twist
Init 0 0 0 0 0 0

Bend x x x x max/min x

Twist x x x x x max/min
Legs Equal max/min max/min max/min max/min 0 0
Legs Oppos. max/min min/max max/min min/max 0 0

Table 4.1.: Set of motor positions defining each motor primitive.
+/- : frontmost / backmost respectively rightmost / leftmost motor position
x: Don’t care

and offset. As all other components, exceptRun,define offset as zero and amplitude as
maximum motor amplitude, only the frequency discriminatesthe respective component.
Since the duration is also identical for all our primitives,the goal position purely depends
on the frequency. Hence if different motors operate at the same frequency, their goal
position is equal1 and the corresponding legs move in parallel. Available frequencies are
fRun, 0 and±f where

f =
1

NumTicks
, (4.1)

so that the leg swings between maximum and zero position during one action period.
Since, sinus is an odd function, it only depends on the sign ofthe corresponding fre-
quency, whether a motor ends up in minimum or maximum position. This cohesion can
be expressed as follows:

sin(f · t) = − sin(−f · t) ⇔ − sin(f · t) = sin(−f · t) where −
π

2
≤ f ≤

π

2
(4.2)

As a consequence, the legs swing forward iff > 0 and backward iff < 0. Forf = 0 the
leg return to mid position. The newly derived motor primitives are listed in Table 4.2 on
the next page.

On that basis, MiniDog6M should be capable of finding proper sequences on its own. In
the following, “frequency” and “goal position” are used synonymously.

The next section elaborates a criterion to rate motor primitives as well as entire vocabu-
laries.

4.2. Evaluation of vocabularies
In this section, we establish a general means to assess individual motor primitives and sets
of these by examining the symmetry and flexibility of each component. The meaning of
symmetry and flexibility will be elaborated in the following.

1The term “equal” instead of “identical” is used on purpose, since maximum respectively minimum motor
angle has the same quality for all motors, but does not refer to excately the same value.
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FrontLeft FrontRight HindLeft HindRight Bend Twist
Run fRun fRun fRun fRun 0 0
Init 0 0 0 0 0 0

Bend0 x x x x x max/min
Bend1 max/min max/min max/min max/min 0 0
Twist0 x x x x x −f

Twist1 x x x x x f

LegsEqual0 −f −f −f −f 0 0
LegsEqual1 f +f f f 0 0

LegsOpposite0 f −f f −f 0 0
LegsOpposite1 −f +f −f f 0 0

Table 4.2.: Adapted motor primitives for sinusoidal control.

4.2.1. Flexibility-Index

Using the term flexibility as the antonym of stiffness implies that motor primitives bear
potential for adaptation. In this sense, we adapt motor primitives by introducing the afore
mentioned “Don’t care” symbol. In this connotation, the exemplary vocabularies can be
divided into two groups, A and B. Motor primitives in group A always specify each mo-
tor position, whereas group B allows the just specified type of uncertainty. To make this
unambiguous let us construct an example.

Let 1..5 be motor primitives of type A. Here +/- specifies the maximal/minimal motor
angle.

1: - - - - + -
2: + + + + - +
3: + - + - - -
4: - - + + - -
5: + + + + + +

Then the goal posture2 implied by the following action sequences is always the same.

1 2 3 4 5 → + + + + + + (=̂5)
1 4 5 3 5 → + + + + + + (=̂5)
1 5 → + + + + + + (=̂5)
5 → + + + + + + (=̂5)
3 3 3 3 5 → + + + + + + (=̂5)

2To be precise that is the posture specified by motor primitive5 as this is the common finish of all se-
quences.
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Considering group B exemplary motor primitives might look as follows:

1: x x - - + x

2: + + + + x +
3: + x + - x x

4: + + + + + +
5: - - x x - -

wherex designates stop/Don’t-Care.

4 1 5 → - - - - - -
4 5 → - - + + - -
4 3 5 → - - + - - -

Other than the example of type A, each sequence ends up in a different posture.

To honour this uncertainty, we introduce a special Flexibility-Index F lx that represents
the ratio between the actual amount and the theoretically maximum of Don’t-Care terms.

F lx =
actual amount ofx
max amount ofx

(4.3)

Note, that the number of Don’t-Care terms in single motor primitive lies between 0 and 6,
but the mean of nine different primitives cannot exceed a maximum of 5.11.

In contrast to other architectures, that have to deal with concurrent behaviours nominated
by different behaviours or control levels (as BISAM), MiniDog6M only enables the se-
lection of one action sequence or primitive. The combination of motor primitives result
as just explained through Don’t-Care terms. Consequently,the currently selected primi-
tive can only be mixed with primitives selected in the near past and not with primitives
selected by concurrent behaviours. The reason for this lieswithin the lack of coexistence.
In the current version of MiniDog6M, we consider only sequential and not parallel be-
haviours, namely running and standing up. For now, it is easier to stick to our simple
assignment since we want to evaluate the usability of vocabularies for a given task.

How primitives that serve concurrent duties can be merged toachieve the best possible
robot performance heavily depends on the semantics of the articulated behaviours and is
therefore not considered here.

4.2.2. Coherence-Index

A second criterion for action primitives is its inner correlation respectively homogenity of
a posture. Herefore we define the state of all motors in mid position as root posture (motor
primitive: init). The similarity to this root posture and the symmetry of motor positions is
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expressed by the Coherence-IndexCo which is elaborated in the following3.

First, we divide the motors in “clusters of interest” attributing the fact that certain motors
serve different purposes regarding their position and effective direction within the robot.
For MiniDog6M we identify three groups - namely leg motors, bend motor and twist
motor.

As bend and twist motors build a class of their own, their goalposition needs to be com-
pared to the root posture only. Consequently, mid position is judged with correlation 1,
whereas each motor finding itself in minimal and maximal motor angle has correlation
0. Don’t-Care is estimated with 0.33, since the probabilityto reach 0 is one third. This
leads us to the following spinal Coherence-Index values listed in Table 4.3. “+/-” denotes
minimum or maximum angle, “0” stands for mid position and “x” signifies Don’t-Care.

Bend/Twist +/- x 0.0
Co(Bend/Twist) 0.0 0.33 1.0

Spine Bend +/- x +/- x +/- 0.0 x 0.0 0.0
Twist +/- +/- x x 0.0 +/- 0.0 x 0.0
Co(Spine) 0.0 0.165 0.165 0.33 0.5 0.5 0.665 0.665 1.0

Table 4.3.: Coherence-IndexCo(..) for spinal motors
0: mid position
+/-: minimum or maximum angle
x: Don’t-Care

Since the legs’ group contains more than one motor, this assignment is not enough to
criticise the combination of motor angles. Hence, we regardthis case of one motor per
group as special case and extend our measure for groups with more than one motor. In
doing so, we regard symmetry the primary criterion and mid position as secondary one.
Symmetry in this connotation denotes parallel movement of front, hind, left and/or right
hand legs.

For our quadruped, we only distinguish four basic categories of symmetry. Either of these
is of equal quality. These categories, a detailed coherencevalue and probability distrib-
ution for a single motor primitive can be found in Table 4.4 onthe next page. Here ’0’
stands for mid position, ’x’ allows each angle and ’*’ stands for minimum or maximum.
The circle denotes parallel movement. Note that the orientation of the robot is not given,
so the head may be set on either side. Hence an encircled pair of legs can be deemed front,
hind, left or right hand, without loss of generality.

The main categories are subdivided with distance to mid position, which means that we
additionally increase the Coherence-Index if the parallellegs are in mid position. Hav-
ing to consider parallelism, the probability distributionfor Don’t-Care in the leg motors’
group is much more complex than for the spine.

3In general, the root posture can also be starting posture, home posture or any other posture which is of
particular interest.
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Main category 0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Sub category
0
0

0
0

*
*

*
*

0
0

*
*

+
+

-
-

0
0

*
*

*
*

x
x

x
x

x
x

Co(legs) 1.0 0.833 0.667 0.5 0.333 0.167 0
probability 0.01 0.03 0.1 0.05 0.22 0.38 0.21

Table 4.4.: Coherence index and probability distribution for each categories of symmetry
of the legs
“0”: mid position
“x”: allows each angle
“*”: minimum or maximum angle
The circle denotes parallel movement of encircled legs. Head may be attached
on either side

It is understood that this general probability distribution must be concretised in reference
to the actual vocabulary.

Merging the Coherence-Index of spine and legs, we weight thecorresponding values in
ratio of the number of motors. Just as we did for the spine.

Co(motor primitive) =
1

ntotal

·
∑

all groups

Co(group) · ngrp (4.4)

with ntotal being the number of motors andngrp the number of motors in the group.

In our case study, this means

Co(motor primitive) =
Co(bend) + Co(twist) + 4 · Co(legs)

6

=
2 · Co(spine) + 4 · Co(legs)

6
(4.5)

The Coherence-Index of an entire vocabulary as set of motor primitives is defined as:

Co(vocabulary) =

∑

all motor primitives Co(motor primitive)

max
(4.6)

with max being the theoretical maximum of accumulated coherence of all primitives.

The different sets of motor primitives that will be discussed in our ongoing experiments
are nominated and evaluated in the next section.
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4.3. Choice of further vocabularies
As we cannot evaluate all possible vocabularies, six exemplary sets were chosen in this
section to be investigated in this thesis.

We decided on three sets belonging to group A and three to group B. They are listed in
Appendix B (group A in section B.1, group B in section B.2). Obviously, Runmust be
part of all of them. We stick to a total of ten actions, so that we can compare how the
selected primitives influence behavioural diversity, robustness and learning progress. It
is understood that using less actions will automatically accelerate the learning progress
and most likely reduce the behavioural diversity. Thus the size of a distinct vocabulary
is considered a trade-off between fast learning suitable for real world online learning and
maximum behavioural diversity.

The vocabularies partly overlap in order to investigate howthe significance of single com-
ponents will change in dependency of the accompanying primitives. To overview the ef-
fect of similar vocabularies, one with and the other withoutDon’t-Care, the sets can be
paired as follows: 1 and 4, 2 and 5, 3 and 6. The original vocabulary that was worked out
in section 4.1 is number 4.

The Flexibility-Index and the Coherence-Index should alsobe calculated for each task
individually. As the ten primitives can be divided into two groups, namely locomotion
(Run)and standing up (1-9), the subsequent tables only consider standing up. The analysis
of the vocabularies is listed in table 4.5, and the individual rating of single primitives in
table 4.6 on the next page.

Vocabulary F lx Co

Group A 1 0.00 0.92
2 0.00 0.86
3 0.00 0.68

Group B 4 0.43 0.78
5 0.24 0.74
6 0.20 0.59

Table 4.5.: Coherence-Index and Flexibility-Index of vocabularies

In order to enable further experiments with different morphologies, we will proceed with
a simulated version of MiniDog6M. Its implementation as well as the simulation platform
is introduced in the subsequent chapter.
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1 2 3 4 5 6
Co F lx Co F lx Co F lx Co F lx Co F lx Co F lx

1 1.00 0 0.79 0 0.71 0 1.00 0 0.79 0 0.71 0
2 0.93 0 0.64 0 0.71 0 0.28 83 0.64 0 0.71 0
3 0.93 0 0.71 0 0.29 0 0.28 83 0.42 0.67 0.29 0
4 0.93 0 0.93 0 0.21 0 0.28 83 0.55 0.83 0.21 0
5 0.93 0 0.71 0 0.93 0 0.28 83 0.71 0 0.25 0.83
6 0.86 0 0.86 0 0.50 0 0.86 0 0.86 0 0.50 0
7 0.86 0 1.00 0 0.86 0 0.86 0 1.00 0 0.22 0.67
8 0.57 0 0.57 0 0.86 0 0.57 0 0.57 0 0.57 0
9 0.57 0 0.93 0 0.57 0 0.57 0 0.41 0.33 0.86 0

Table 4.6.: Coherence-Index and Flexibility-Index of eachmotor primitive (first column)
of all vocabularies (first line)
A clear distinction can be seen between group A withF lx = 0 and Group B
with F lx > 0.



5. Virtual MiniDog6M for experiments
in Simulation

Since we plan to investigate various vocabularies in combination with different morpholo-
gies which cannot be changed effortlessly in the real world,we transferred MiniDog6M
into a simulated environment. The first section introduces apublic library used for phys-
ically realistic simulation throughout our further studies. The model of MiniDog6M and
the necessary changes of the controller are specified afterwards. Finally, the morphologies
that will be investigated in the course of this thesis are selected.

5.1. Simulation with Open Dynamics Engine
In this section, the simulation platform for our experiments will be presented.

MiniDog6M was simulated in a physically realistic environment with the help of the Open
Dynamics Engine (ODE), which is a free, industrial quality C++ library for simulating ar-
ticulated rigid body dynamics [Smith 04]. Since it is fast, flexible and robust, with built-in
collision detection, it is a comfortable way to simulate moving objects, such as legged
creatures, in a virtual reality environment. In contrast tomany other tools using only
springy contacts of objects, ODE additionally supports hard contacts by declaring special
non-penetration constraints for collision. Hereby speed and stability are emphasised over
physical accuracy.

In ODE agents and objects must be defined as articulated structures which consist of rigid
bodies of various shapes (box, sphere, ray, triangular meshor capped cylinder) connected
with joints of various types (ball-and-socket, hinge, slider, hinge-2, fixed, angular motor,
universal).

Each body is determined by constant and dynamic properties.Constant properties are its
point of reference which is settled on the position of the centre of mass, its total mass and
its inertia matrix that describes how the body’s mass is distributed around its centre. A
body’s motion is described as the dynamic properties of its point of reference, namely the
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position vector, the orientation, the linear and angular velocity vector. The orientation is
thereby represented either as quaternion or a rotation matrix.

Each joint is determined by the position of its anchor and a number of parameters con-
trolling its geometry. Since all these properties are independent of the bodies they are
attached to, it is possible for the bodies to be in positions where the joint constraints are
not met.

Often the user is to blame for such a “joint error” by setting the position/orientation of one
body without correctly setting the position/orientation of the other body, but this can also
happen due to numerical errors. During the simulation, rounding errors can accumulate so
that bodies drift apart. This drift can be reduced by settingthe Error Reduction Parameter
ERP , a value between 0 and 1. The author recommends to setERP = 0.1 . . . 0.8. The
default is 0.2.

Another important parameter to achieve fault tolerance is Constraint Force MixingCFM .
A positive value ofCFM takes the system away from any singularity and improves the
factoriser accuracy by allowing the original constraint that produces the constraint force to
be violated by an amount proportional toCFM times the restoring force that is needed to
enforce the constraint. In other words the constraint will be softened asCFM increases.
The author recommends to setCFM = 10−9 . . . 1.0, while the default is10−5 for single
and10−8 for double accuracy.

The equations to model a body’s motion are derived from a Lagrange multiplier velocity
based model according to Trinkle/Stewart and Anitescu/Potra. To simulate the creature(s)
through time, a first order integrator is being used. It’s fast, but not accurate enough for
quantitative engineering. Each integration step advancesthe current time by a given step
size, allows all joints to apply so called constraint forcesto bring the bodies they affect
back into correct alignment and finally adjusts the state of all rigid bodies for the new time
value. Higher order integrators are planned.

Collisions between objects within the simulated environment are handled as follows: Be-
fore performing a world step, the collision detection functions must be called to determine
the intersection areas. These functions return a list of contact points specified by its posi-
tion in space, its surface normal vector and its penetrationdepth. A special contact joint is
created for each contact point, supplied with extra knowledge about friction, springyness,
spongyness etc and put into a joint group.

In fact,CFM andERP can used to control its spongyness and springyness of a joint. In
fact, the user can realise the same effect as any spring constantkp and/or damping constant
kd by settingERP andCFM in dependency of the step sizeh as follows:

ERP =
h ∗ kp

h ∗ kp + kd

(5.1)

CFM =
1

h ∗ kp + kd

(5.2)

Then a simulation step is taken. Afterwards, all contact joints are removed. Other colli-
sion detection libraries can be used instead of the built-incollision functions as long as
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they provide the right sort of information in the contact point.

To speed up the simulation at the cost of accuracy, the special option “quickstep” can be
chosen. Another possibility to reduce computational time is to disable all object that do
not interfere with enabled bodies. As a consequence, they nolonger will be updated.

The contact and friction model is a fast approximation to theColoumb friction model, but
originally based on the Dantzig LCP solver described by Baraff. The Coulomb friction
model is a simple, but effective way to model friction at contact points by defining a fric-
tion cone to model the relationship between the normal and tangential forces at a contact
point. If the total friction force vector is within the cone then the friction force is enough
to prevent the contacting surfaces from sliding. If it is on the surface of the cone then that
contacting surfaces move with respect to each other.

For graphical output, ODE includes the drawstuff library using OpenGL. To render 3D
objects in a virtual environment, OpenGL only needs to know the objects plus additional
information on camera position and light sources. These information are handled by draw-
stuff through the GLUT extension library of OpenGL.

The ODE library can be compiled as fast release or as slower debugging version. In the
latter, function arguments are checked and many additionalrun-time tests are done. These
tests ensure the internal consistency, but they are also thereasons for a big loss of perfor-
mance. The current version is 0.5.

How ODE was used to create a realistic simulation of MiniDog6M, is explained in the
subsequent section.

5.2. Model for MiniDog6M
In this section, the simulated version of MiniDog6M is described.

The simulated Minidog6M was modelled for ODE. A schematic and screenshot of the
virtual robot are illustrated in Figure 5.1 on the followingpage.

The shape and weight distribution of the control area (yellow cylinder in schematic) is
not specified in detail and is approximated with a centred capped cylinder. The legs (grey
rectangles in schematic) are approximated with capped cylinder for the upper (light grey)
and for the lower (dark grey) legs. The servos are modelled asboxes (white boxes in
schematic). The spine links connecting the front and hind part of the robot are also rep-
resented as small boxes (light blue). The additional weights in the feet are modelled as
small capped cylinders (green dots) within the lower legs. The robot dog in our simulation
is not altogether identical with the physical model, but yields a good approximation.

The proportions of each component are listed in Table 5.1. Since the parameters in ODE
should not be too small (approximately 1.0), we set 0.1=̂ 1 cm for all linear and 0.1̂=
10g for all mass dimensions.



62 5. Virtual MiniDog6M for experiments in Simulation

Figure 5.1.: Simulation screenshot (left) and schematic ofMiniDog6M (right)
The control area, the legs and the feet are approximated withcapped cylin-
ders, spine links and servos with boxes. Actuation is implemented as flapping
hinge joints (orange dots). The springs are implemented directly into the pas-
sive hinge joints (white dots).

The rigid parts of the body are connected with fixed joints, the upper legs as well as the
spine are controlled and linked by hinge joints (orange dotsin schematic). The springs
are implemented directly in the lower hinge joints (white dots in schematic) by means
of adjusting Constraint Force MixingCFM and Error Reduction ParameterERP as
follows:

dParamStopERP = 1 +
StepSize · SprintConstant

DampingConstant
(5.3)

dParamStopCFM =
1

StepSize · SpringConstant + DampingConstant
(5.4)

The constants restricting the dynamics of the simulated dogrobot are listed in Table 5.2
on page 64.

In ODE the ground is defined over its plane equation:

a · x + b · y + c · z = d (5.5)

The left hand parameters define the unit normal vector(a b c) which stands orthogonal on
the surface. For flat ground(0 0 1) is fine, for inclineα we use± cos α for eithera or b and
sin α for c. The remaining parameterd is zero throughout all experiment. The definition
of the coordinate axes can be seen in Figure 5.2 on page 64

TheCFM of the ODE world remains the default value, whereasERP is raised to 0.8.

For reasons of reuse, encapsulation and information hiding, we decided to implement The
simulated dog robot as C++ classMiniDog6M. To create an instance ofMiniDog6M, a
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Attribute Value
Size of one servo 0.298·0.296·0.12
Mass of one servo 0.19

Radius of control area 0.12
Length of control area 0.296
Mass of the control area 0.55

Radius of the legs 0.05
Length of the upper legs 0.5
Mass of the upper legs 0.026
Length of the lower legs 0.6
Mass of the lower legs 0.102

Radius of one foot 0.05
Length of one foot 0.05
Mass of one foot 0.05

Height that the legs raise
the chasis off the ground 0.65
(in stance phase)

Size of spine link
attached to servo bend 0.136·0.01·0.1
Size of spine link
attached to servo bend 0.01·0.148·0.1
Mass of spine links 0.01

Table 5.1.: Linear and mass dimensions of elements buildingthe simulated MiniDog6M
0.1=̂ 1 cm for all linear and 0.1̂= 10g for all mass dimensions

user must not employ the standard constructor1, butMiniDog6M(dWorldID world,
dSpaceID space, float StepSize) instead. The parameters refer to the envi-
ronment and the discretisation of time. This constructor creates a standing dog robot with
the middle of the spinal link positioned over the margin of the x-y-plane.

The changes in control as well as the public procedures will be described in the next
section.

5.3. Controller for simulated Minidog6M
In this section, the public methods of our base class will be defined. Further, Mini-
Dog6M’s controller will be adapted to fit the circumstances of simulation.

Since the virtual and the real MiniDog6M’s controller, should be as similar as possible,
we defined the same enumeration types for head position and gaits as introduced for the

1Thus the default constructor is declaredprivate.
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Attribute Value
Springconstant 418
Dampingconstant 0.05
Angular range of spring driven joints [30◦; 60◦]

Max force produced by one servo 5
Angular range of hind right servo [-51◦; 104.5◦]
Angular range of hind left servo [-55◦; 92.5◦]
Angular range of front right servo [-51◦; 108◦]
Angular range of front left servo [-50.5◦; 90◦]
Angular range of servo “bend” [-65◦; 62◦]
Angular range of servo “twist” [-72.5◦; 73◦]

Table 5.2.: Constants responsible for manoeuvrability

Figure 5.2.: Definition of coordinate axes in ODE

real world. The agent’s position and gait as well as the head posture, the current angle and
frequency of each motor, can be read out with the respective get procedures.

The agent’s position is defined as the position of the head’s centre of mass and is delivered
in form of a vector(x y z) of real values byGetDogPosition.

The gait can be setwithSetGait respectively read withGetGait. To start running,
trotting or backing up, the user has to callMove. These behaviour can be stopped if the
gait is set toStill or if Init is called which stop the robot and brings all motors to mid
position.

The acceleration sensor cannot be simulated physically realistically, but, at present, this is
no problem since, even in the real world, only the pre-processed data in form of the agent’s
position are presented to the controller. This effect can easily be reached in ODE since the
absolute and relative position of the centre of mass of each rigid body and each joint an-
chor can be read out withdGeomGetPosition respectivelydJointGetHingeAn-
chor. This is why we classify the position on the basis of height differences between
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head, backside, control area, servo “bend”, joint anchors of upper front legs along z-axis.
Basically, we also employ the algorithm 1 on page 48, but substitute the expectations of
the acceleration values with the corresponding height differences in the orthogonal po-
sitions. Further, we leave out step 5 to 8, since there is no refinement necessary. The
classification process can be kicked off withSensePosition. The resulting position
can be read withGetPosition.

The angle of the hinge joints is indirectly controlled by itsangular velocitydParamVel,
instead of assigning values of 0..255 to the distinct positions (as it is in the servo mo-
tors). As it is in real motors, the target position is not always reached exactly in one step.
Hence we implement a controller that constantly adjusts thejoint error using the following
equation:

dParamV el = TargetMotorAngle − CurrentMotorAngle (5.6)

The resulting leg trajectory is qualitatively pictured in Figure 5.3.

Figure 5.3.: Motor control according to equation 5.6
The controller constantly tries to nullify the joint error between current (red)
and target (black) motor angle

The current motor angle as array of double values can be read with GetCurrentMo-
torPos. The controller frequency/amplitude of each motor can be read respectively set
as array of double values withGetCurrentMotorFreq / GetCurrentMotor-
Ampl respectivelysetControllerParameter / setMotorAmpl.

The classical pre-programmed standing up trajectories areprovided byStandUp.

For facility of inspection, the above mentioned public methods are summarised below:
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MiniDog6M() Standard constructor (do not use)
MiniDog6M( dWorldID
world, dSpaceID space,
float StepSize)

Constructor forMiniDog6M

~MiniDog6M() Destructor forMiniDog6M
void Init() Stops agent’s motion and brings all motors into

mid position
void Move() Triggers locomotion with preset gait in

MiniDog6M::Gait
void SensePosition() Classifies position of the agent’s

head. Classification result is saved in
MiniDog6M::position

const dReal*
GetDogPosition()

Returns position of agent’s head as vector of
real values

double*
GetCurrentMotorPos()

Returns current motor angle of all motors as
vector of real values

double*
GetCurrentMotorAmpl()

Returns current motor angle of all motors as
vector of real values

double*
GetCurrentMotorFreq()

Returns current motor angle of all motors as
vector of real values

Positions GetPosition() Returns position of dog robot’s head
Gaits GetGait() Returns current gait
void SetGait(Gaits
gait)

Sets the agent’s gait

void
setControllerParameter(
double* freq)

Sets motor frequencies as vector of real values

void
setMotorAmpl(double*
Amp)

Sets motor amplitudes as vector of real values

void StandUp(bool
&ready)

Triggers pre-programmed standing up se-
quences

The motor primitives are also transferred into simulation.Like in the real dog each motor
primitive is carried outNumTicks. The step size in all our experiments is set to 0.05.

In the next section we will select three different morphologies for our further studies.

5.4. Selection of different morphologies
In this section, we will point out further effects of morphology and on that basis select
three different morphological variations for our ongoing studies.

Some central effects of morphology are already described inchapter 3, namely increased
manoeuvrability through additional weights in the feet, the imbalance and directionality
in Figure 3.6 on page 49 and the impact of inclined ground in section 3.4. Other plain
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examples can easily be found in simulation. They which inspired us to investigate not
only the consequences of different vocabularies, but also their dependency of different
morphologies.

In one experiment, the shape of the head is changed into a cuboid. As soon as the robot
dog lands or turns on its back, the weight of the head pulls it on the whole bearing area of
the cuboid and the robot will not be able to free itself from that position. The agent gets
stuck because its hind and legs cannot reach the ground anymore and because the pure
rotational moment is not enough to turn over the edges of the head. This is a classical
deadlock.

Moreover, the effect of rolling over on its back from one sideto the other just by twisting
the spine first in one and then in the opposite direction simply relies on the mismatch in
the weight ratio of head and hind. If the weights were equal, the quadruped would only
twist back and forth and end up in the same position it startedfrom.

All these consequences do not result from changes in the controller strategy, but from
more or less significant changes in the weight distribution,motor range and shape of the
head. From now on we concentrate on the head because our present experiments imply
that changing its shape has the largest impact on the standing up task. Thus we introduce
three additional settings keeping up the original weight distribution, but with different
forms of the head. The experimental morphologies with either control area in shape of
a horizontal or vertical capped cylinder or a round head are pictured in Figure 5.4. We
would like to survey more variations here, but further exploration goes beyond the scope
of this thesis.

Figure 5.4.: Experimental morphologies (original, vertical, round)
Changes in the shape of the head have biggest impact on the agent’s behav-
iour. Mass and centre of mass are equal in all versions.
Vertical: cannot roll over on the back
Round: cannot stand on the head, but rolls over on the back most easily

A plain consequence of this choice is the fact that the robot’s head cannot roll over on the
back with vertical head and that it cannot stand on the head with the round head.



68 5. Virtual MiniDog6M for experiments in Simulation

Note that the original MiniDog6M can use each motor primitive in vocabulary 4 to stand
up, whereas some of the actions in the other sets will be completely useless. Anyway,
the eligibility of certain components may change dramatically as we alter the robot dog’s
morphology.

To investigate how the shape of the head affects the nature and amount of solutions, a
measure for behavioural diversity and a full search algorithm to generate it are developed
in the next chapter.



6. Generating and evaluation of
behavioural diversity

This section describes the first row of experiments for the evaluation of the vocabularies
selected above. First, we establish a general means to compare the behavioural diversity
of different tasks or vocabularies. To overview the varietyof legal standing up sequences
on flat ground and inclines, we ran a full search simulation.

6.1. Measure for behavioural diversity
In this section, a measure which is independent of task, morphology and control concepts,
is derived in order to evaluate and compare behavioural diversity.

6.1.1. An intuitive approach to behavioural diversity

Up to this day, researchers all over the world cannot agree ona single definition of the
term intelligence. Despite the great variety of explanations, there is one central aspect in
most of them and this is the generation of behavioural diversity. An organism that always
exhibits the same behaviour is generally not considered an intelligent being. This concept
holds for all levels of intelligence, for abstract thinkingas well as for simple tasks, in
humans and in all sorts of animals.

It is understood that behavioural diversity must always be seen in contemplation of the
given task. Whether a person can open a bottle of beer in just one or 20 different ways is
meaningless if he or she is sitting in front of a bottle of wine. In order to provide a base
for comparing behavioural diversity related to the same task, we establish a measure that
will be employed later on.

If we follow the different ways through Figure 3.6 on page 49,we can easily find multiple
paths of equal or different length from each initial position to goal position. Regarding
initial positionLeft, we find six sequences requiring five and also six sequences requiring
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six time steps (disregarding loops). Providing the pictures with numbers top down and
from left to right beginning with 0, these twelve sequences are:

4 → 8 or 9 → 10 → 14 → 16 → 19 (length: 6)
4 → 8 or 9 → 10 → 14 → 17 → 19 (length: 6)
4 → 8 or 9 → 11 → 16 → 19 (length: 5)
4 → 8 or 9 → 11 → 17 → 19 (length: 5)
4 → 8 or 9 → 12 → 15 → 17 → 19 (length: 6)
4 → 8 or 9 → 13 → 17 → 19 → (length: 5)

A simple means to measure behavioural diversity could be theplain number of different
sequences e.g. 12. It is obvious that 12 would be considered better than 3. Having a closer
look we will find that it is not that easy.

Imagine two robots achieving the same goal. Robot A can choose between three differ-
ent behaviours in order to succeed, whereas robot B manages five behaviours. Is robot B
indeed preferable to A? Not always. To make a point let us consider the task of grasping
an object on the basis of motor primitives such as grab with right hand, step towards the
table, stretching arm out while standing on the tiptoes, bend wrist etc. which can be com-
bined to the following sequences:

A: 1 → 3 → 5
4 → 6 → 5
7 → 2 → 3 → 1

B: 1 → 4 → 5 → 2
1 → 4 → 5 → 3
1 → 4 → 5 → 7
1 → 4 → 6
2 → 4 → 6

If, for any reason, it is impossible to carry out motor primitive 4, for instance because of
a hindered joint, robot B would have to give up, whereas robotA could still get along and
reach the goal position of its task.

Now picture an obstacle between the robot and the object. It is clear that robot A, though
being defeated comparing the plain number of available solutions, will be more likely to
succeed. Whereas robot B can only try to get around the obstacle with its final move (at
least in four out of five possible choices), robot A can adapt much earlier e.g. step aside
or take the other arm. Since adaptability is the most important reason for behavioural
diversity, robot A would be better suited than B because of low correlation between the
behaviours.

On the other hand, we can also think of an example where the advantage is on robot B,
for instance, if one sequence is especially energy efficientor if special sub-goals can only
be reached with particular parts of a sequence. Moreover, ifthe agent has to adapt in the
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course of a particular (long) sequence, then robot A would have to revise everything and
select a new sequence, whereas robot B can switch in the middle of sequence to another
one which so far equals our first choice. Thus it would be desirable to maintain a balance
between diversity and heterogeneity.

Moreover, a researcher should take into account the capability of a vocabulary to transfer
a given problem or task into another, for instance standing up from the left to standing up
from the right. So, if a robot is hindered by a wall or any otherobstacle and thus cannot get
up from its current position, it would be very useful to roll over to another position where
it has enough legroom. Therefore, the more transfer capability is engaged, the better.

6.1.2. Behavioural-Diversity-Index BDI
Providing a quantitative scale unit to compare the behavioural diversity generated by dif-
ferent vocabularies, we derived a measure Behavioural-Diversity-IndexBDI according
to Algorithm 3 on the next page.

First, we will reduce the entirety of all behaviours to a baseof significant behaviours.
Thereby, all needless sequences, which consist of another (shorter) sequence plus a pre-
fix of meaningless actions, will be deleted. We do this, sincewe can always lengthen
a sequence by performing senseless actions beforehand. Theremaining sequences are
divided into groups in which all members either have the samebeginning or the same
ending. Further, these groups are divided in to subgroups ofidentical length. For each
group a value called diversity factorD is calculated which expresses the heterogenity of
the corresponding group. TheBDI is the product of the total amount of legal sequences
with the mean diversity factor.

Note that motor primitives involving Don’t-Care must not beviewed in isolation but in
context of their forerunners and hence must be substituted with its fully specified version.
Each version counts as separate component.

One might argue that, under certain circumstances, equal weights of the non-member
and the member contribution to equation 6.1 on the followingpage is inappropriate. For
these cases we recommend to use equation 6.3 instead of equation 6.1. The additional
weightsWnonmbr for the non-member part andWmbr for the member part are calculated
by equation 6.4 and equation 6.5 respectively.

D = Wnonmbr(n) ·

(

1 −
ngrpmbr

ntotal

)

+ Wmbr(n) ·
∑

allgroups

(

nsubmbr

ntotal

·
(

1 −
nequal

l

)

)

(6.3)

Wmbr =
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(
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(6.5)
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Algorithm 3 Behavioural Diversity
1. Delete all sequences that consist of another (shorter) sequence plus some prefix.

2. Extract groups of sequences which either have the same beginning or the same
ending. Each sequence may appear in more than one group.

3. Divide every group into subgroups of identical length.

4. Calculate the diversity factorD for every group as follows:

D = 1 −
ngrpmbr

ntotal

+
∑

all subgroups

(

nsubmbr

ntotal

)

·
(

1 −
nequal

l

)

(6.1)

with

ngrpmbr =
∑

all subgroups

nsubmbr: number of group members

nsubmbr : number subgroup members

ntotal : total amount of legal sequences

nequal : number of equal steps

l : length of sequence (=number of steps)

5. CalculateBDI as the product of the total amount of legal sequences with themean
diversity factor.

BDI =
ntotal

ngroup

·
∑

all groups

D (6.2)

with

ngroup :number of groups

Heren denotes the number of legal sequences produced by a distinctvocabulary. The
resulting weight distribution is pictured in Figure 6.1. The thresholdN can be chosen in-
tuitively or as average amount of sequences over all vocabularies that we like to compare.

Another criterion can be the average length of the distinct sequences. Generally speaking:
If you want a job done, the sooner the better. If a robot autonomously explores its en-
vironment, it is convenient to discover a maximum area before returning to the charging
station. In our case, all motor primitives have the same duration respectively action period
and therefore we measure the duration of the entire sequenceby counting the steps. Nev-
ertheless, we consider speed as non-functional design criterion and thus less important
than diversity and total amount of sequences.

We calculate both, average length and behavioural diversity, separately for all initial posi-
tion. Merging all information of one vocabulary, we weight the individual values with the
probability of its initial position.
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Figure 6.1.: Suggested weight distributionWmbr (blue, eq. 6.4) andWnonmbr (red, eq. 6.5
on page 71)
Recommended weight distribution if equal weights between the non-member
and the member part of equation 6.1 on the facing page is inappropriate. The
threshold N can be chosen intuitively or as average amount ofsequences over
all vocabularies.

6.1.3. Example
Let us look at the following example:

Vocabulary A
A1: 1 → 3 → 8 → 5
A2: 4 → 6 → 7 → 5
A3: 7 → 2 → 3

Vocabulary B
B1: 1 → 4 → 5 → 2
B2: 1 → 4 → 5 → 3
B3: 1 → 4 → 5 → 7
B4: 1 → 4 → 6
B5: 2 → 4 → 6
B6: 5 → 7 → 2 → 4 → 6

CalculatingBDI:

1. Delete sequences:
Robot A: NoOp

⇒ ntotal = 3
Robot B: Delete sequenceB6

⇒ ntotal = 5

2. Extracting groups:
Robot A: G1 = {A1, A2} ∈ {. . . → 5}

⇒ ngrpmbr = 2, nequal = 1
Robot B: G1 = {B1, B2, B3} ∈ {→ 1 → 4 → 5 → . . .}

⇒ ngrpmbr = 3, nequal = 3
G2 = {B1, B2, B3, B4} ∈ {→ 1 → 4 → . . .}
⇒ ngrpmbr = 4, nequal = 2

G3 = {B4, B5} ∈ {. . . → 4 → 6}
⇒ ngrpmbr = 2, nequal = 2
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3. Divide into subgroups:
Robot A: G1: no subgroups necessary

⇒ nsubmbr = 2, l = 3
Robot B: G1: no subgroups necessary

⇒ nsubmbr = 3, l = 4
G2.1 = {B1, B2, B3}
⇒ nsubmbr = 3, l = 4

G2.2 = {B4}
⇒ nsubmbr = 1, l = 3

G3: no subgroups necessary
⇒ nsubmbr = 2, l = 3

4. CalculateD:
Robot A: D = 1 − 2

3
+ 2

3
·
(

1 − 1

4

)

≈ 0.83
Robot B: D1 = 1 − 3

5
+ 3

5
·
(

1 − 3

4

)

= 0.55
D2 = 1 − 4

5
+ 3

5
·
(

1 − 2

4

)

+ 1

5
·
(

1 − 2

3

)

≈ 0.57
D3 = 1 − 2

5
+ 2

5
·
(

1 − 2

3

)

≈ 0.73

5. CalculateBDI :
Robot A: BDI = ntotal · D = 3 · 0.83 = 2.49
Robot B: BDI = ntotal ·

D1+D2+D3

3
≈ 5 · 0.62 ≈ 3.08

Calculating the average length:
Robot A:

‖ A1 ‖ + ‖ A2 ‖ + ‖ A3 ‖

ntotal

=
4 + 4 + 3

3
≈ 3.67

Robot B:

‖ B1 ‖ + ‖ B2 ‖ + ‖ B3 ‖ + ‖ B4 ‖ + ‖ B5 ‖

ntotal

=
4 + 4 + 4 + 3 + 3

5
= 4.2

In the next section, we create behavioural diversity with a full search trial and error algo-
rithm.

6.2. Full search for behavioural diversity
As a tool for overlooking the behavioural diversity generated by each combination of
head, vocabulary and ground angle, we set up an algorithm that performs a structured
walk through the entire search space and which will be described in this section.

As the longest sequence from one of the basic positions to stand takes five steps in the
real world, we decided to give the simulated robot six steps to try. After these six steps,
the controller derives the next sequence, execute it and afterwards evaluates its result.

In order calculate the next sequence, we take the whole sequence as integer which is
increased stepwise. Seeing that this results in six to the power of ten possibilities, we
considered a reduction of the search space in five steps:
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1. The last action must be Init(), since this is the goal motorposition.

2. The first action must never be Init(), since this is also thestarting motor position
and hence would be a wasted step.

3. Never the same action twice in a row, as this would also be a waste of time.

4. When an action sequence is only differentiated from a previously successful se-
quence by the very last statements of that successful sequence, there is no further
need to investigate the current sequence further. Executing them would bring no
new insights.

5. A currently executed action sequence is skipped when its current step results in one
of the basic position plus all motors in position zero.

If a sequence reaches position isStandwith all motors in mid position, success will be
encountered and the sequence will be logged in the fileWays2Stand.txt. Leading to
one of the other basic positions execution is also stopped, since following steps will be
acquired by the learning process from that position. Actionsequences that denote transi-
tions between the basic positions are recorded inBasicTransitions.txt.

The resulting files for one initial position have the following structure:

8 0
1 3 0
1 4 3
1 9 5
1 5 7
1 4 3 0
1 5 3 1
1 9 3 1
1 3 4 7
1 8 4 8
2 9 4 0
2 3 5 4
2 4 5 0
2 9 6 0

1 0 --> basic position: 1
1 7 --> basic position: 2
1 2 0 --> basic position: 1
2 3 0 --> basic position: 1
4 5 0 --> basic position: 5
4 6 0 --> basic position: 1
4 8 0 --> basic position: 1
4 9 0 --> basic position: 4
4 2 7 --> basic position: 1
5 3 7 --> basic position: 5
7 5 7 --> basic position: 5
7 6 7 --> basic position: 1
7 8 7 --> basic position: 3
7 9 7 --> basic position: 3

The left column despicts an example forWays2Stand.txt. The example forBasic-
Transitions.txt is shown on the right. Here, each line represents one solution
sequence. The numbers refer to the index of the corresponding motor primitive. The ex-
ecution of a sequence propagates from left to right. The arrows in can be translated with
“bring the robot from the initial position to ”.

The overall full search algorithm is listed in Algorithm 4 onthe next page below.

In order to find most advantageous members for a vocabulary, it would be reasonable to
stepwise trade insignificant components for new ones and thus gradually improve the set.
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Algorithm 4 Full search algorithm
until (all sequences executed) do {
dog->SensePosition();
dog->GetCurrentMotorFreq();
bool ready=((dog->GetPosition()==Stand)

&& (all motor freq==0));
if ((all motor freq==0)&&(execution started)

&& (dog->GetPosition())!= Stand))
{

Log sequence in file BasicTransitions.txt;
return -1;

}
if ((!ready)&&(execution not finished))
{

Execute next action;
return 0;

}
else

if (ready) // StandingUp accomplished
{
Log sequence in file Ways2Stand.txt;
return 1;

}
else // ActionSequence failed
{
return -1;

}
if (return value != 0)
calculate new sequence;

}

The significance or importance of a primitive can be seen in terms of its contribution to
the behavioural diversity of the whole vocabulary. If the behaviours are represented as
sequence (for instance as the result of our full search algorithm), this can easily be mea-
sured by counting the frequency of occurrence. If the diverse behaviours are presented in
a graph such as Figure 3.6 on page 49, one has to multiply the number of incoming and
outgoing connections. The more sequences depend on a specific action, the more justified
is its nomination for the final set.

We repeat this algorithm for all vocabularies and, inspiredby the qualitative experiments
in section 3.4, also for two alternative ground angles. As inthe real world experiments,
we concentrated on the four extreme head positions straightdownhill, uphill, left or right
with inclinations of 22.5◦ and 30◦. The result are presented in the next section.
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6.3. Results
In this section, we analyse sequences with two or three primitives derived from our full
search algorrithm. We review the Behavioural-Diversity-Index, the average length, the
transfer capabilities for all combinations of vocabularies and morphologies in flat terrain
and the robustness on slopes with 22,5◦ and 30◦. Moreover, we evaluate the significance
of each primitive.

Though we tried to reproduce the physical robot dog as realistically as possible, there are
several sequences that only work in simulation (the same holds for the other way around),
but these minor mismatches are insignificant for our conceptual research. In the follow-
ing, ’O’ will be the shortcut for the original shape of the head, ’V’ for the vertical cylinder
and ’R’ for the round head.

The evaluation of distinct vocabularies according to the measure for behavioural diver-
sity postulated above is listed below. Table 6.1 schedules the average length and the
Behavioural-Diversity-Index. Average length ’∞’ tributes to the fact that the quadruped
cannot stand up from all initial positions (here:Left).

Vocabulary Average Length Behavioural-Diversity-Index
O V R O V R

1 ∞ 2.73 ∞ 7.33 8.81 6.74
2 2.85 2.85 2.83 16.66 16.47 12.73
3 2.93 2.8 2.9 5.59 6.64 2.27
4 2.95 2.95 2.94 8.23 8.62 7.62
5 2.84 2.84 2.79 15.45 16.49 12.19
6 2.94 2.88 2.91 7.82 9.63 3.26

Table 6.1.: Behavioural-Diversity-Index of vocabulariesevaluated for standing up within
two or three steps
Those vocabularies are considered the better, the lower theaverage length of
their solutions. ’∞’ means that the agent cannot stand up from at least one
initial position (here: Left). Those vocabularies are considered the better, the
higher theBDI of their solutions. Looking at theBDI, vocabulary 5 performs
best and vocabulary 3 poorest, irrespective of the shape of the head.

Looking at theBDI, we find that vocabulary 5 performs best, vocabulary 2 secondbest
and vocabulary 3 poorest, irrespective of the shape of the head. Rank three to five depend
on the particular morphology. Generally, a Flexibility-Index greater than zero results in
an higherBDI. This can be explained easily, if the actual meaning ofF lx in the sense
of intermixing of motor primitives, is considered. By that means, a single primitive can,
depending on its predecessors, occur in many different variants. In fact, the set of actually
ten primitives is extended with a number of “mutants”. A thusincreased vocabulary
naturally results in more diverse behaviours.

The much more interesting fact is that theBDI of original and vertical head is always
very similar. This is especially fascinating, since very often the original and the round
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1 2 3 4 5 6
O V R O V R O V R O V R O V R O V R

1 2 3 2 1 1 1 1 1 1 2 2 2 1 1 2 1 1 2
2 5 4 3 8 9 9 5 4 2 7 7 6 9 8 9 7 8 3
3 6 4 3 7 4 6 6 6 9 8 9 9 7 6 8 9 7 9
4 6 4 3 7 4 5 4 5 3 5 4 2 6 3 6 5 6 3
5 3 2 3 4 3 4 3 3 3 3 3 4 4 5 5 3 4 1
6 6 4 4 6 4 7 8 7 9 4 1 1 5 4 7 8 6 9
7 4 4 3 2 2 2 7 3 9 6 6 5 2 2 1 6 5 3
8 1 1 1 3 3 3 6 6 9 1 5 3 3 5 3 4 3 4
9 5 4 3 5 4 6 2 2 3 7 7 6 8 7 4 2 2 2

Table 6.2.: Significance of each motor primitive (first colum) within its vocabulary (first
row) in dependency of the shape of the head (second row)
1 signifies the most and 9 the least important component for the behavioural
diversity. For a vocabulary with maximum behavioural diversity, a researcher
should select the most significant primitives from each set.

head have at the most part identical solution, whereas the vertical head has not. This
instance automatically proves that our measure is indeed independent of the underlying
behaviours.

Table 6.2 shows the significance of each primitive in dependency of the shape of the head.
The numbers from 1 to 9 signify the order of priority where 1 signifies the most and 9 the
least important component within each set. In most cases, a significance value of 9 means
the respective component is not used at all. For a vocabularywith maximum behavioural
diversity, a researcher should select the most significant primitives from each set.

Regarding the above mentioned transfer capabilities, we find that irrespective of the shape
of the head, those vocabularies with Flexibility-Index greater than zero (vocabulary 3 to 6)
have equal or more possibilities to traverse between the basic positions than the according
vocabulary in group A. There are only two exceptions: vertical head, vocabulary 4, initial
position back and original head, vocabulary 5, initial position head. This result can also
be explained refering to the additional variants. Actually, it is not at all surprising that
the degree of behavioural diversity complies with the transfer capability, since, in a way,
the transfer capabilities will extend to solutions if they were given more time. In doing
so, they also contribute to the behavioural diversity. The greatest difference hereby is
between vocabulary 2 and 5, the least between 3 and 6. The detailed results can be looked
up in Table 6.3 on page 81. Here, the numbers represent the amount of valid sequences
of length two or three that lead from the initial position on the left to the initial position
in the column. It is clear that we left out transitions where the initial and the goal posture
are identical because we can just do nothing instead.

Comparing the different morphologies, we find many relations between their solutions
that not at all arbitrary, but that are grounded in the choiceof motor primitives as well as
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in the shape. Here the stress lies on shape, since the weight and the centre of mass of each
part of the body is identical in all versions.

Though only few strict rules can be identified, there are manyexamples where the entirety
of solutions for one initial position are equal or a subgroupof the solutions of another
initial position within the same or different head forms. The solutions for the round head
for instance intersect to a large extent with the solutions of the original head. The vertical
head’s solutions forRightoften hold forBack, too. Further, we find that the set of solutions
for each initial positions of the round head intersects withthe respective set for the original
head. Regarding the original head, the solutions for the right hand side are strongly related
to left hand side solutions of the vertical head.

Moreover, we find that the solutions for all initial positions and heads are most dissimilar
for vocabulary 3 and 6. The highest similarity can be detected for vocabulary 2 and 5.
Herein we even observe symmetrical tendencies. This means for the original head that all
solutions for theLeft are also valid forBack. The same holds for about half of the solu-
tions for Right andHead. However, this relation is inverted for the vertical head which
means that the solutions forBackare identical to those forRight instead ofLeft.

We find that single solutions are valid for all initial positions of one head (’position sta-
ble’), some for the same initial position, but of different heads (’form stable’). Most
surprisingly, some solutions are even valid for all forms and all initial positions (form
and position stable). These especially robust sequences can be divided into two groups.
In the first group, MiniDog6M needs to carry out the whole sequence for all basic posi-
tions, whereas in the second group the robot can still get up only with the last part of the
sequence.

Actually, all vocabularies provide at least one type stability: though all of them produce
form stable sequences for the right hand side, only vocabulary 2, 5 and 6 produce form
stability for the left hand side. This imbalance is groundedin the asymmetry of motor
range. Depending on vocabulary and initial position, the amount of stable sequences
varies considerably. For vocabulary 5, the amount is nearlythe same forLeft andRight.
Though vocabulary 5 is most stable forLeft, is only second rank forRight. Still it the best
choice regarding morphological changes. The biggest difference is, as usual, produced
by vocabulary 1, which is the most form stable vocabulary forRight, but unfortunately
cannot provide any solution forLeft.

Further, we find that it seems to be much harder to create position stable solutions than
to create form stable ones. So only the vertical head supports position stability for all
vocabularies. In contrast to that, only vocabulary 2 and 5 achieve position stable solutions
for the original head. Once again, vocabulary 5 is our first and vocabulary 2 our second
choice. The last rank is preserved for vocabulary 4. Regarding those results, it is not
astonishing that only vocabulary 2 and 5 achieve both, form and position stable solutions.
Again 5 is better than 2.

An interesting fact is that sequences, that are stable in only one way, involve motor prim-
itives with Flexibility-Index greater or equal zero, but that primitives belonging to form
and position stable sequences all have Flexibility-Index zero.
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Considering the above mentioned compliance between the solutions of different heads,
one would assume that the respective agents behave similarly in changing environment,
for instance on inclines. To be concrete, we expect that formstable sequences on even
ground, perform for all heads identically on inclines. Thisshould above all be true, if, as
it is in our case, the weight distribution and the centre of mass are identical.

Surprisingly, this assumption is not true. Tables 6.4 on page 82, 6.5 on page 82 and 6.6
on page 83 show the validity for learned behaviours on inclines of 22.5◦ and 30◦ (sin and
cos are an abbreviations forsin α respectivelycos α). The columns are labelled with the
number of the vocabulary, the ground angle and the normal vector (x y z) on the ground.
’R’ stands forRight and ’L’ for Left. ’=’ means that all behaviours for flat terrain are
also successful on the respective inclination. ’+’ means that new behaviours emerged.
The opposite is the case for ’X’, where there is no solution atall. The other shortcuts are
composed of the symbol for the shape of the head and the symbolfor the initial position
whose behaviour is assumed.

As we can see, the original and the round head perform equal orbetter in most cases.
The only exception is vocabulary 1, which accomplished lessbehavioural diversity on
steep inclines (but equal to vertical head,Right). Hence we conclude that the round head
performs better than the original and that all vocabulariesare of equal quality except of
vocabulary 1. Nevertheless it is not that easy for the vertical head. We can divide its
robustness into three different categories. Vocabulary 2 to 5 switches the solutions for
LeftandRight. The same holds for the right hand side solutions of vocabulary 1 as well as
for the left hand side solutions of vocabulary 6. The left hand side solutions of vocabulary
1 behave as if with the original head (two exceptions on inclines of 22.5◦). For the right
hand side, vocabulary 6 performs equal or better than the original head. Note that VL for
vocabulary 1 to 5 is for the most part the same as OR.

As a conclusion, we can say that the original and the round solutions are really robust for
applications in environment with slopes of various degreesand directions. Those for the
vertical head underlie a strange morphological effect thatcauses MiniDog6M to switch
left and right hand solutions. So far, we cannot explain thisstrange morphological effect
except that it is somehow grounded in the shape.

Generally trial and error at random is not a good strategy foran agent behaving in natural
environment. To get along in new situation structured search and learning is much more
suitable. Therefore, the support of the learning progress is an important feature of a good
basic vocabulary.
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O 1 2 3 4 5
1 1 - 0 0 0 0

2 0 - 0 0 0
3 14 12 - 0 0
4 18 1 0 - 0

2 1 1 - 0 0 0
2 0 - 0 0 0
3 14 0 - 0 0
4 2 10 12 - 0

3 1 - 2 6 0 0
2 1 - 7 0 0
3 1 12 - 0 0
4 0 13 2 - 0

4 1 - 0 4 1 0
2 0 - 0 2 0
3 14 12 - 0 0
4 18 7 0 - 0

5 1 - 1 4 0 0
2 0 - 0 2 0
3 12 1 - 2 0
4 0 17 10 - 0

6 1 - 3 9 0 0
2 1 - 8 0 0
3 1 12 - 0 0
4 0 13 3 - 0

V 1 2 3 4 5
1 1 - 0 0 0 0

2 0 - 0 0 0
3 14 12 - 0 0

2 1 - 0 0 0 4
2 0 - 0 0 0
3 28 0 - 0 0

3 1 - 0 4 0 0
2 0 - 2 0 0
3 2 1 - 0 0

4 1 - 0 0 2 0
2 0 - 3 1 0
3 2 2 - 0 0

5 1 - 0 0 4 4
2 0 - 3 0 0
3 20 2 - 1 0

6 1 - 0 0 0 0
2 0 - 6 0 0
3 12 5 - 0 0

R 1 2 3 4 5
1 1 - 0 0 0 0

2 0 - 0 0 0

2 1 - 1 0 0 0
2 2 - 0 0 0

3 1 - 1 7 0 0
2 0 - 7 0 0

4 1 - 0 6 0 0
2 0 - 0 0 0

5 1 - 3 4 0 0
2 0 - 0 1 0

6 1 - 1 10 0 0
2 0 - 9 0 0

Table 6.3.: Transfer capabilities of underlying vocabularies.
The first column labels the subsequent section with the number of the vocab-
ulary. Each section is to be read as follows: standing up from[row] can be
transferred into standing up from [column] by [item] sequences. We left out
transitions where the initial and the goal posture are identical, because we can
just do nothing instead.
We find that irrespective of the shape of the head, those vocabularies with
flexibility index greater than zero have equal or more possibilities to traverse
between the basic positions than the according vocabulary without.
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Vocabulary α (0, cos, sin) (0,− cos, sin) (cos, 0, sin) (0,− cos, sin)
R L R L R L R L

1 22.5◦ = = VR = VR = VR =
30.0◦ = = = = = = = =

2 22.5◦ = = = = = = = =
30.0◦ = = = = = = = =

3 22.5◦ = = = = = = = =
30.0◦ = = = = = = = =

4 22.5◦ = = = = = = = =
30.0◦ = = = = = = = =

5 22.5◦ = = = = = = = =
30.0◦ = = = = = = = =

6 22.5◦ = = = = = = = =
30.0◦ = = = = = = = =

Table 6.4.: Validity for learned behaviours on inclines: Original head
=: All behaviours for flat terrain are also successful on the respective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.
R: Right
L: Left

Vocabulary α (0, cos, sin) (0,− cos, sin) (cos, 0, sin) (0,− cos, sin)
R L R L R L R L

1 22.5◦ = = VR = VR = VR =
30.0◦ + = = = = = = =

2 22.5◦ = = = = = = = =
30.0◦ + = = = = = = =

3 22.5◦ = = = = = = = =
30.0◦ + = = = = = = =

4 22.5◦ = = = = = = = =
30.0◦ + = = = = = = =

5 22.5◦ = = = = = = = =
30.0◦ + = = = = = = =

6 22.5◦ = = = = = = = =
30.0◦ + = = = = = = =

Table 6.5.: Validity for learned behaviours on inclines: Round head
=: All behaviours for flat terrain are also successful on the respective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.
R: Right
L: Left
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Vocabulary α (0, cos, sin) (0,− cos, sin) (cos, 0, sin) (0,− cos, sin)
R L R L R L R L

1 22.5◦ VL OL = OL X OL VL OL
30.0◦ VL OL VL OL VL OL VL OL

2 22.5◦ VL VR VL VR VL VR VL VR
30.0◦ VL VR VL VR VL VR VL VR

3 22.5◦ VL VR VL VR VL VR VL VR
30.0◦ VL VR VL VR VL VR VL VR

4 22.5◦ VL VR VL VR VL VR VL VR
30.0◦ VL VR VL VR VL VR VL VR

5 22.5◦ VL VR VL VR VL VR VL VR
30.0◦ VL VR VL VR VL VR VL VR

6 22.5◦ OR VR OR VR OR VR OR VR
30.0◦ OR+ VR OR+ VR OR+ VR OR+ VR

Table 6.6.: Validity for learned behaviours on inclines: Vertical head
=: All behaviours for flat terrain are also successful on the respective inclina-
tion
+: New behaviours emerged
X: There is no solution at all.
R: Right
L: Left
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7. Effects on learning progress

In this chapter the design of the learning environment and the experimental setup is de-
scribed. Finally the learning progress is evaluated.

7.1. The learning method
In this section, the concepts that build the basis of our learning framework are described.

7.1.1. Q-Learning

Learning is particularly difficult in robotics because sensing and acting in the physical
world involves uncertainty due to incomplete and noisy sensory information and a dy-
namically changing environment. Here learning means acquisition of a task fulfilling
sensory-motor control strategy through trial and error. Indoing so, learning strategies
disagrees with adaptive control by allowing failure duringthe process of learning. This
behaviour resembles the way that humans and animals acquirenew strategies in thinking
and movement. Reinforcement Learning (RL) is a wide spread approach to solve a great
variety of learning problems without relying on a teacher orsupervisor. Based on early
conditioning work in psychology, learning is engaged by interaction with the environment
[Sutton 98, Neumann 05].

During the process of learning, the adaptive system undertakes some actions which affect
its environment. Hereupon, it is reinforced by receiving a scalar evaluation of its actions.
This reinforcement signal is generally known as ’reward’. The reinforcement learning
strategy stresses outputs that maximise the received reward over time. To maximise the
gained reward, those actions must be preferred that in the past led to the highest reward in
the given situation. This act of taking advantage of gathered knowledge is called exploita-
tion. Yet, there might be new actions that are unexplored, but lead to even higher reward.
Therefore the trade-off between exploitation and exploration is one of the key aspects in
RL.
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At each time stept, the learning system receives the states of the environment. Depending
on that, an action a is performed, which transfers the systeminto the new states′. This
transition is reinforced by the rewardR. Time is generally preceived as discrete.

A central idea of reinforcement learning, together with trial and error search and delayed
reward, is the estimation of how good it is for the agent to be in a given state or to take a
certain action in a given state. This estimation is based either on a value functionsV or
a Q-FunctionQ which belong to the class of temporal difference learning (TD). To make
long-term predictions about the dynamical system,V (s) depends on the current state and
Q(s, a) on the current action-state pair. An action selection mechanism called ’policy’
chooses the highest rated action for each state.

In this context, Q-Learning is one of the most popular type ofReinforcement Learning. Its
aim is to find a satisfactory Action-Value-Function which maximises the future discounted
reward if the agent chooses the actiona in states and then resumes policyπ. This can be
expressed in equation 7.1.

Q(s, a) = E[R(s, a, s′) + γ ∗ Q(s′, a′)] (7.1)

where actiona′ was chosen according to the policyπ andR(s, a, s′) is the reward gathered
during the last step.E(x) designates the expectation ofx. Needless to say, that an action
which was selected in a distinct state in the past and led to maximum reward are preferred
whenever this state reoccurs.

Therefore, the Q-valueQ(st,at) at time indext is a matrix with one value for each dis-
tinguishable state and each action initialised with zero and updated during the learning
process by

Q(st−1, at−1) = α · err(t)

err(t) = R(t) + γ · max{Q(st, a)|a ∈ A} − Q(st−1, at−1) (7.2)

with learning rateα and discount factorγ. A designates the batch of actions that are avail-
able in the current state.

Often the Q-Function is represented as a table, but since themotor angles in our model
are implemented as real values, a table is not feasible.

7.1.2. Linear function approximation
To solve the problem of continuous state space mathematically, a common tool to estimate
functions of all kinds is the so-called linear approximation. A linear model for a function
f(x) consists of a set of basis functions which are combined in a weighted sum as follows:

f(X) = wi · hi(X) i = 0 . . .m, X = (x1, . . . , xm) (7.3)
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Whereas all parameters of the basis functionshi are fixed (otherwise it would be nonlin-
ear), the weightswi are adapted so that the resulting sum resembles the originalfunction
f(X) as much as possible. For theoretical concerns, homogenous function sets are of
special interest. In this context, homogenous means of the same type, e.g. polynomial,
exponential or sinusoidal. The latter are of particular interest for Fourier analysis.

7.1.3. Radial Basis Function network

In order to realise the linear approximation of the Q-function and because of its excel-
lent generalisation ability, we decided on a Radial Basis Function network (RBF-NN)
[Orr 96], which is described in the following.

In general, an artificial neuron (see Figure 7.1) consists ofthree parts, namely input,
computation and output. The computational part can be decomposed into combination
function which combines the inputs, the activation function which calculates the result-
ing activity, and the output function which delivers the corresponding output. All these
elements must be defined for each neuron in the network.

Figure 7.1.: Artificial neuron
Each artificial neuron has three parts: input, computation and output. The
computational part can be decomposed into combination function, activation
function and output function.

RBF-NNs are three layer networks with a radial activation functions in the hidden layer
which can either be self-organised or fixed. Herein the most popular set consists of
Gaussian functions with meanc and standard deviationr which in case of scalar input
can be computed as follows

hi(x) = e
−(x−c)2

r2 (7.4)

This approach follows the idea of bounded input pursued by bounded output. The result-
ing activation for a one respectively two dimensional inputcan be visualised as shown in
Figure 7.2 on the next page. Each neuron has its own activation function which is only
unequal zero for a small part of the input space. This area is limited by means of stan-
dard deviation. The resultant regions of limited size are called local receptive fields and
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allow localised learning within the boundaries of such a region. This dynamic allocation
of resources significantly reduces the computational effort for RBFs and, for that reason,
makes them suitable for online function approximation. This is also the reason for a much
better performance than in ordinary feed forward NN. Moreover the same property sup-
ports the switching between behaviours (as mentioned in section 6.1) by adding an offset
to all input values and thus shifting the activation to another part of the network, where a
diverse behaviour might be realised.

Figure 7.2.: Two (left) respectively three (right) dimensional Gauss function with mean
0.0 and standard deviation 1.0

7.1.4. A fertile interplay of all three concepts

Combining the issues mentioned above, we linearly approximate the Q-Function by means
of a RBF-NN. In this context, the NN can be implemented as shown in Figure 7.3 on the
facing page.

The layers are fully connected and the number of neurons in the hidden layer is fixed. The
input vector, which is almost directly fed into the hidden layer neurons and the weights be-
tween the hidden and the output layer are represented bywi from equation 7.3 on page 86.
The base functionshi(X) stand for the activation of the hidden knot, the output is thees-
timated Q-Value and is made up of the weighted sum of all activations.

Actually not all inner neurons are active, since only those neurons having an activation
unequal zero whose RBF-centers lie within the range of two sigma around the current
input vector. In the special case of one dimensional input, the activation of each neuron
can be directly read off from the Gaussian distribution and can be pictured in Figure 7.4
on page 90.

Another reason for choosing RBF-NN, is the fact that, since their activation is scaled with
distance from the centre, linear function approximation using localised receptive fields
with an activation factor between [0.0; 1.0] generalise better than discrete states. Note
that the discrete state representation can be considered a special case with only one active



7.2. Reinforcement Learning Toolbox 89

Figure 7.3.: RBF-NN as linear approximator
The layers are fully connected. X is the input vector. The weights between
the hidden and the output layer are represented bywi from equation 7.3. The
basis functionshi(X) stand for the activation of the hidden neuron. The
output being the weighted sum of all activations is the estimated Q-Value.

feature (thus the activation is either 1 or 0).

Since the current input has only local influence in RBF-networks, only the weights of
neighbouring features must be adapted in each learning step. Using fixed centres and sig-
mas, we just have to learn the linear scale factors of the RBF-Functions. We chose those
centres according to the minimal, maximal and mid position of each motor, since they are
the only relevant goal positions for standing up.

We decided to use this approach, since it merges the advantages of both, RBF-NN and
Reinforcement Learning. Solutions that purely rely on the neural network part, have on
one hand the great generalisation ability combined with optimal computational efficiency,
but are highly non-linear and very difficult to analyse. RL, on the other hand, is well
formulated in mathematical terms and, for the external observer, it is quite easy to under-
stand what is going on in the internal process. Further, the idea of representing complex
function as a linear combination of much simpler functions is a well established theory in
maths and physics.

In order to get quick results, we have the Reinforcement Learingn Toolbox, which will be
described in the next section, take care of the learning process.

7.2. Reinforcement Learning Toolbox
In this section, a framework for RL, namely the Reinforcement Learning Toolbox (RLT)
[Neumann 05] will be described. We decided to use the RLT, since, on one hand, we
can easily extend our system for hierarchy and other future assignments without having
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Figure 7.4.: Activation of two neighbouring RBF-neurons A and B in two dimensional
case
EA, EB: mean of A respectively B
EX : current input
Activation of neurons A and B, which are next to the current input, can be
directly read off from the respective Gaussian distribution.

to redesign everything and since, on the other hand, it is available to anyone who plans
similar studies. So some decisions were met to fit the conceptof the RLT and not because
we think it was the best possible choice.

The RLT is a C++ framework for a variety of reinforcement learning algorithms. Being
developed by Gerhard and Stephan Neumann from TU Graz, this library is for the most
part designed for researchers with the intent of letting theuser concentrate on the learning
problem itself and not on the implementation of the learningfunctions, policies etc.

At present the following learning functions are covered: TD-lambda Q-Learning learning,
TD-Lambda V-Learning (TD learning also with continuous Time Residuals), Actor critic
learning, Advantage Learning, model based reinforcement learning (prioritised sweeping,
value iteration), policy search algorithm (PEGASUS and CONJPOMDP) and VAPS.

Additional basic features are tools that support error recognition, hierarchical reinforce-
ment learning and logging of Q-function, policy or whole episodes. A semi Marcov De-
cision Process (MDP) learning environment is alleged.

For reasons of reuse and complexity, the RLT Q-Learning treats each line of the action-
value matrix individually which means learning a separate value function for each action.
The value function V(s) of states is defined as future discounted reward if the agent starts
in state s and follows the policyπ. In regard of the prefix “future”, the reward can only be
predicted and thus the expectationE[R] is used. Herein, the discount factorγ is used to
stress reward that are expected in the near future.
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V (s) = E[
m

∑

k=0

γkR(t + k)] (7.5)

This kind of value estimation, where the entire trajectory is considered beginning in state
s, is often referred to as Monte-Carlo-Method.

Using the RLT, it is possible to create one or more learning objects with diverse learn-
ing algorithms, reward functions or even different state discretisations, each of which can
learn simultaneously from the same training trial. The userhas to provide the RLT with
an environment model, a set of actions and a reward function.Alternatively, the user can
provide his own pre-programmed controller and then try to improve it with reinforcement
learning. One can choose to learn from single steps or whole episodes. The current ver-
sion is 2.0.

Furthermore, the toolbox offers the possibility to use a linearly approximating RBF-NN
or to introduce external neural networks (NN) from the Torchlibrary. Torch is a BSD li-
censed machine learning library containing all sorts of artificial neural networks (includ-
ing convolution network and time-delay neural networks), supporting vector machines
for regression and classification, Gaussian mixture models, hidden Markov models, K
means, K nearest neighbours, Parzen windows, bagging and adaboost. For convenience
of the user Torch is included in the reinforcement learning toolbox, but can also be down-
loaded separately, the current version being 3.1.

In the next section, the experimental setup will be described.

7.3. Experimental setup
As already described, we utilise a linear Q-approximating RBF-NN. This section presents
the parameter setting, the model and the reward function of our learning environments as
well as the interplay with ODE.

The classDogModel encapsulates the model of MiniDog6M and provides the interface
to the RLT. Motor angles are continuous variables and the position of the head is a dis-
crete variable. Further, it provides the reward function aswell as functions to reset and
update the environment model. Thus it must be inherited fromCEnvironmentModel
andCRewardFunction.

Each of the previously nominated motor primitives suppliesone action of the typeCPri-
mitiveAction to the learning envirenment. Every action is available in each step of
our learning environment.

As already mentioned, the learning progress itself is invisible to the user. In our RBF-
NN, the neurons of the hidden layer are called feature. Theircentres, which are the



92 7. Effects on learning progress

means of the Gassian activation function, are set on minimum, zero and maximum of
each motor’s angular range. The standard deviation is calculated automatically so that 2
centres have a distance of twice the standard deviation. To calculate the activation of each
feature, we use the RLT’sCSingleStateRBFFeatureCalculator, which means
that each feature has its own set of parameters. Using linearinterpolation, only those
two features are active, which are the nearest to the currentinput vector. Thus we get
2N active features, whereN is the number of input dimensions. Their activationΨ is
calculated as follows:

Ψi(s) =
ai(s)

∑

j aj(s)
(7.6)

wherei and j are indices of a feature of continuous state variables andai denotes the
Gaussian activation function with meanµ and standard deviationσ:

ai(s) = e
− 1

2

P
j

�
si,j−µi,j

σi,j

�2

(7.7)

As can easily be seen the activation is normalised with the sum taken over the remaining
features and thus lies between 0.0 and 1.0.

For discrete state variables, the activation is very simplesince only one feature is active.
The remaining features bear activation 0.0. As a result, thenumber of features for con-
tinuous state variables multiply with the number of discrete features. We imagine this
as having one set of continuous features per discrete value.So the activation must only
calculated for those continuous state variables that belong to the currently active discrete
feature.

To finally select an action on the basis of our Q-Function, an Epsilon-Greedy-Policy with
ǫ = 0.3 is pursued. This strategy selects the Greedy-Action which means the action
with the highest Q-Value, with the probability of 0.7 and chooses a random action with
a probability of 0.3. The learning rateαis set to 0.4, discount factorγ has a default
value of 0.95. Replacing eligibility traces withλ = 0.9 are used.λ is used to diminish
the responsability of past actions for the currently given reward respectively the current
TD-error. This problem is often refered to as credit assignment problem. A value of
0.9 means that past action have a strong influence on the current state. The attribute
“replacing” means that the trace will be reseted as soon as a nongreedy action is selected.
On one hand this might slow down the the learning progres, since a learner has apotentially
short sighted knowledge base. On the other hand, it makes thelearning progress make
stable, since a learner, who gernerally assumes that the greedy action was taken, might be
confused be a resulting high TD-error.

The Q-function that arises from this combination of the Q-learning base class with replac-
ing eligibility traces and direct gradient calculation canbe summarised as follows:

Q(s, a) =
∑

i

Φi(s) · wi,a (7.8)
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where

Φi(s) =
Q(s, a)

dwi,a

(7.9)

represents the gradient of the linear approximator. Note that for all other actions

Q(s, a1)

dwi,a2

= 0, with a1, a2 ∈ A\{a} (7.10)

Using a linear approximator, the Q-Function is not updated directly. Instead, we have to
update the weight of each feature separately. Regarding theconcept of receptive fields
in RBF networks, computational effort is reduced and the update is accelerated, since we
only have to update the active features in each step. In our case these are only two. The
resulting update function is:

∆wi,a = α · (rt + γ · max
a′

Q(st + 1, a′) − Q(st, at)) · et(w) (7.11)

with

et(w) = λ · γ · et−1(w) +
dQ(st−1, at−1)

dwi,a

(7.12)

Herei refers to a continuous state variable andwi,a refers to the functions approximator’s
weight vector assigning a scaling factor to each featurei for actiona. ∆w is the weight
update. e denotes the eligibility trace which, in case of function approximation, is not
used to trace the recent state history, but to directly tracethe approximator’s weights in-
stead. Thus it is designated ase(s) instead ofe(w).

If a robot autonomously explores its environment, it is convenient to accomplish a max-
imum of tasks before returning to the charging station. Therefore and for reasons of
efficiency, we decided on a time limit. The learning process is segmented into episodes
of six steps. As mentioned above, each steps consists ofNumTicks ODE world steps.
An episode is claimed to have failed, when the simulated dog robot neither stood nor ran
within the given six steps. Here “stand” and “run” are definedas upright posture, gaitStill
with legs in mid position or gaitRunning.

For running (as just defined) a reward of 150 is assigned, for standing the reward is 100.
To speed up learning by encouraging exploration, we also dispense negative reward, giv-
ing a penalty of -1, if the agent did not succeed within six steps. In all other steps the
reinforcement signal is zero. The resultant reward function is

R(n) =



















150.0 running innth step

100.0 standing innth step

−1.0 lying down andn = 5

0.0 otherwise

(7.13)
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with n = 0 . . . 5 being the step counter in the current episode.

The initial position for each learning episode is determined by applying a random force to
knock over the running dog. The probability distribution can be seen in Table 7.1 below.

1 2 3 4 5
Original 0.39 0.39 0.15 0.07 <0.01
Vertical 0.44 0.44 0.12 <0.01 <0.01
Round 0.48 0.52 <0.01 0.0 <0.01

Table 7.1.: Probability distribution for initial position(first row) in dependency of the
shape of the head (first column)

The overall learning algorithm is listed in Algorithm 5 below.

Algorithm 5 Learning algorithm
if(steps==0)
model->Reset the environment model;

model->refresh inputs for RBF-NN
if(steps==0)
agent->start new learning episode;

agent->perform step through NN;
model->Read the network outputs and set them for ODE
model->Get reward
update weights in NN;
if(steps < 5)
steps++;

else
{
model->new MiniDog6M;
step = 0 ;

}
Throw over dog

Using the RLT, the only thing the user has to do is to provide anenvironment model, a set
of actions and a reward function. Moreover, the user has to doeverything that is external
to the toolbox which means everything that is not directly concerned with Q-function,
RBF-NN and action selection. Access and control of ODE, for instance throwing the
dog over, carrying out the selected action and collision detection, fall in this category.
The other steps are carried out automatically by the RLT through calling the respective
functions. Most of these methods are internal which means the user can either access
them indirectly by setting some decisive parameters, such as learning rate, discount factor
etc or not at all. Some methods need to be overwritten by the user and made available in
the model class. These methods are:

• virtual double getReward(CStateCollection *oldState,
CAction *action, CStateCollection *newState)
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• virtual void getState(CState *state)

• virtual void doNextState(CPrimitiveAction *action)

• virtual void doResetModel()

First,getState updates the model state by collecting the respective information from
the ODE environment. On that basis,getReward returns the reward gathered through-
out the last step.doNextState passes the selected action on to ODE. Further, it sets
the reset as well as the failed flag to determine whether an episode has successfully ended,
has failed or has not ended at all.DoResetModel, which prepares the learning model
for a new episode, is triggered by the reset flag.

7.4. Results
In this section, we present the learning progress of the first200 episodes.

The success rate denotes the probability that the dog is ableto resume its way within six
steps. So failure here does not mean that the dog was unable tostand up at all, but only
that it would need more than the given six steps. In the following, we disregard initial
positions that occur with a probability less than 0.01.

For our environment model, we tried several configuration ofstate variables. First, we
took all motors as continuous and the position of the head as discrete variable. Seeing,
that this results in an enormous state space, we substitutedthe front left and hind right
motor with a single discrete variable that indicates whether front and hind or left and right
hand legs move in parallel. Aiming at a minimalistic design,we soon found out that the
agent even succeeded if it only knows the angle of the spinal motors and the position of
the head. We stick to the latter configuration, since it leadsto the fastest success.

The evaluation of learning progress of one shape of the head in dependency of the re-
spective vocabulary is shown in Figure 7.5 on the next page toon page 98 below. The
evaluation of learning progress of the one vocabulary in dependency of the shape of the
head can be viewed in Figure 7.8 on page 99.

Comparing the results gained from learning progress and behavioural diversity, we find
that a Behavioural-Diversity-Index greater than 10 guarantees success in not more than
100 episodes, whereas in many cases vocabularies with a lower BDI do not even reach
100% success at all.

Having a closer look at the final Q-Function, we still find a lotof values equal to 0. The
reason for this is obviously that the morphology prevents certain postures or that possible
postures are not reachable with the underlying vocabulary.The latter is also the reason
why MiniDog6M with the original head cannot stand up from theleft with vocabulary 1
and consequently cannot reach a success rate higher than 0.61 as seen in Figure 7.5 on the
following page.
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Figure 7.5.: Success rate of original head over 200 episodesBDI greater than 10 guar-
antees success rate = 1.0 in not more than 100 episodes otherwise 1 may not
be reached at all. MiniDog6M cannot stand up from the left with vocabulary
1 and thus cannot reach a success rate higher than 0.61. Flexibility-Index
greater than zero accelerates the learning process.

However, this is not the reason why the original head equipped with vocabulary 3 respec-
tively the round head equipped with vocabulary 4 do not exceed 0.7. Moreover it does
not explain why the round as well as the vertical head do not learn at all with vocabulary
6. We already suggested that their lowBDI is a good indication. For most cases this is
not only an indication, but even the very reason, since finding a proper sequence for these
configurations equals the notorious search for the proverbial needle in a haystack. In cases
of moderateBDI, e.g. 8 or 9, the explanation should be found in an disadvantages search
strategy through the state space. If the success rate lies between 0.9 and 1.0, the reason is
most of our runs already reached 1.0, but not all of them. Consequently the mean success
rate is still less than 1.0. So far, it seems that that a highBDI is necessary, but that it is
not a sufficient morphological explanation for the observedperformance differences.

Interestingly, a Flexibility-Index greater than zero has different consequences for different
morphologies. Actually, it was expected that this type of flexibilty hinders the learning
process for all heads. This is because the goal posture is no longer unambigous and thus
the learner might be confused as the transitions between current state and new state are no
longer injective.
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Figure 7.6.: Success rate of round head over 200 episodesBDI greater than 10 guarantees
success rate = 1.0 in not more than 100 episodes otherwise 1 may not be
reached at all. MiniDog6M cannot stand up from the left with vocabulary
1 and thus cannot reach a success rate higher than 0.61. Flexibility-Index
greater than zero accelerates the learning process.

Considering the probability distribution of the initial states, it becomes obvious that the
learning progress is the faster the less initial positions are supported, but only for vocab-
ularies of type A. It can easily be seen that in case of Flexibility-Index of zero the round
head learns the fastest and the original head the slowest. For Flexibility-Index significan-
tely greater than zero, it is just the other way around. The fastest progress for vertical and
original head can be observed with vocabulary 5, while for the round head MiniDog6M
performs best with vocabulary 1. To put it simple,F lx > 0 accelerates the learning
process for the original as well as for the vertical head, butin contrast to that decelerates
it for the round head.

This insight is especially astonishing, since the solutions for round are for the most part
subsets of the solutions for the original head. Thus, it should be granted that the round
head learn slower, simply as its solutions are harder to find,and that further, their learning
progress should be quite similar, irrespective of the vocabulary. Nevertheless, it seems
that this special type of flexibility outweighs the additional effort resulting from more ini-
tial positions. Anyway, this effect comes effortlessly if it is considered in the design phase
already.
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Figure 7.7.: Success rate of vertical head over 200 episodesBDI greater than 10 guar-
antees success rate = 1.0 in not more than 100 episodes otherwise 1 may not
be reached at all. Flexibility-Index greater than zero accelerates the learning
process.

As the search strategy for nongreedy actions is unfortunately not completely randomised,
the learning progress is additionally influenced by the location of the single solutions
within the search space. This problem is one reason why we cannot derive quantitative
results from these experiments.

In the next chapter, the gathered results are presented and an outlook on future assign-
ments will be given.
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Figure 7.8.: Success rate of all vocabularies over 200 episodes
Red line: Round head
Yellow line: Vertical head
Blue line: Original head
In case of Flexibility-Index = 0 the round head learns the fastest and the origi-
nal head the slowest. For Flexibility-Index > 0 it is just theother way around.
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8. Conclusion and future work

In this chapter, the results gained from this thesis will be described. Furthermore, fu-
ture assignments that directly hook up on our framework as well as entitlements to the
MiniDog6M project are presented.

8.1. Results and implications
The goal of this thesis was to explore how the morphological properties contribute to
generating these discrete entities in the continuous sensory space. In doing so, we inves-
tigated how different vocabularies affect behavioural diversity, robustness and learning
process. Robustness in this context means that the behaviours are tolerant against changes
in morphology, environment and posture. For that purpose, we examined six different vo-
cabularies, three different forms of the head and nine different ground configurations with
slopes of 0◦, 22.5◦ and 30◦. Further, we provided abstract, task and platform independent
measures to categorise and evaluate single motor primitives, entire vocabularies and be-
havioural diversity.

8.1.1. Cheap design
We introduced the project of passive quadruped running to show that our design is in
deed “cheap” and that symmetrical gaits are to be favoured for energy efficient locomo-
tion. As a result, all of MiniDog6M’s gaits are symmetrical along one axis or the other.
MiniDog6M realises the principle of cheap design by means ofusing low friction feet
and springs for locomotion. With its simple sinusoidal controller and the lack of sensory
feedback, MiniDog6M definitely undercuts the minimum requirement of Scout 2.

Comparing videos of Kenken and MiniDog6M, one can see that Kenken hops much
higher. This advantage of height simplifies moving on unevenground, but comes at cost
of more complex control. Talking about cheap design, MiniDog6M’s assembly and con-
troller concept are more fitting, if the roughness of the terrain is reasonable. Though not
MiniDog6M, Puppy will eventually match equal jumping behaviour if its additional knee
actuator will be introduced.
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After all, we stabilised locomotion and increased manoeuvrability by attaching additional
weights to the feet instead of improving control. This leadsto an ecologically well bal-
anced design. This kind of unburdening the controller by bringing forward a proper de-
sign, was introduced as morphological computation. The MiniDog6M project realises this
concept by means of its springy locomotion that manages to create a continuous move-
ment out of coarse-grained control.

8.1.2. Behavioural diversity
Despite the restriction to a distinct vocabulary, diverse activities can come up by means of
sequential combination of single primitives. The red trajectories in Figure 3.6 on page 49
only emerge because of dynamical interactions. Furthermore, the representation in Fig-
ure 3.6 on page 49 can be compared with Figure 2.14 on page 24 inthe sense that only
the critical points are decisive for success. The precise postures in between, which are
substituted with arrows, may vary a little.

Moreover, it was found that more behaviours come forward, ifa special kind of flexibility
is introduced, which arises from the introduction of special “don’t care” symbols. Dis-
covering the suitability of a multitude of complex sequences for different morphologies,
tasks and environments, we suggest to introduce a higher level of hierarchy in order that
task-oriented implementations can make use of all those different solutions. It would then
be the charge of such a hierarchical higher level to choose the best fitting variant (accord-
ing to one or more nonfunctional criteria) and to switch to analternative behaviour if the
best choice does not work out1.

Regarding the transfer capabilities, we find that irrespective of the shape of the head,
those vocabularies with Flexibility-Index greater than zero (vocabulary 3 to 6) have equal
or more possibilities to traverse between the basic positions than the corresponding vo-
cabulary withF lx = 0.

8.1.3. Impact on learning
Applying learning, we find that a Behavioural-Diversity-Index greater than 10 guarantees
a success rate of 1.0 in not more than 100 episodes, whereas vocabularies with aBDI less
than in many cases do not even reach 100% success at all. Finding a proper sequences for
configurations with a lowBDI equals the notorious search for the proverbial needle in a
haystack.

Among other things, it was interesting to see that a Flexibility-Index greater than zero has
different consequences for different morphologies. It accelerates the learning process for
the original as well as for the vertical head, but in contrastto that decelerates it for the
round head. In doing so, it somehow outweighs the additionaleffort resulting from more
initial positions.

1This can easily be achieved in RBF networks by adding a parametric bias, which means an offset to all in-
puts, and thus shift the computation from one receptive fieldto another. Other models of hierarchical re-
current neural network can be found in publications of Jun Tani and Rainer W. Paine [Tani 02, Paine 04].
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8.1.4. Robustness of behaviours
Introducing inclines, we showed the feasibility of the gained knowledge in changing envi-
ronment without adaptation. This means no longer learning and still being able to succeed
in new situations. The only thing a robot designer has to do, is to care for enough behav-
ioural diversity. For this innovative robustness the transfer capabilities which we men-
tioned above are of particular importance. It was also shownthat particular morphologies
are to be preferred for operating in unpredictable environment, since the resulting behav-
iours are more robust. This ability is practically independent of the underlying vocabulary.

Talking about robustness we can say that the solutions for the original and the round head
are also robust for applications in environment with slopesof various degrees and di-
rections. Those for the vertical head underlie a strange morphological effect that causes
MiniDog6M to switch left and right hand solutions. This is especially astonishing, since
the weight as well as the location of the centre of mass or identical in all versions. Consid-
ering further the compliance between the solutions of different heads, one would assume
that the respective agents behave similarly in changing environment for instance on in-
clines. Surprisingly, this assumption is not true. So far, we cannot explain this strange
morphological effect, except that it is somehow grounded inthe shape.

Moreover, it was demonstrated that single solutions are valid for all initial positions of
one head (“position stable”), some for the same initial position, but of different heads
(“form stable”). Most surprisingly, some solutions are even valid for all forms and all ini-
tial positions (form- and position stable). Further we find that it seems to be much harder
to create position stable solutions than to create form stable ones. So only the vertical
head supports position stability for all vocabularies. An interesting fact is that sequences
that are stable in only one way involve motor primitives withFlexibility-Index greater or
equal zero, but that primitives belonging to form- and position stable sequences all have
Flexibility-Index zero.

It was further shown, that the behaviours that arise from ourvocabularies, are also robist
against perturbations of posture. Hence, it was enough to provide our learning model with
not more than the agent’s basic position and the angles of thetwo spinal motors.

8.1.5. Overall results
While it is obvious that the introduction of discrete actions alone reduces the complexity
of a learning task by avoiding online trajectory planning, it was also testified that learning
and control processes are closely related to the morphological properties of the executing
agent. As an effect of proper or improper shape and weight distribution, the given task
can be simplified or in contrast to that be complicated or evenbe ruled out by creating sit-
uations from which it is impossible to solve the task at all. This effect can easily exploited
if considered early in the design phase. Looking at toys a robot’s infrastructure can be
hidden under bizarre shaped plastic covers. If designed properly the decorative shell can
serve as effortless enhancement of performance. Further a designer must also consider
the used material very carefully.

The overall ranking elaborated throughout the thesis is listed in Table 8.1 on the following
page. The numbers determine the rank of the respective vocabulary depending on the
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shape of the head and the property.Co andF lx are ordered numerically. The higher the
value, the higher the rank. Note that for those measure a higher value is not a sign of
superior quality, since they only serve to categorise the distinct vocabularies with respect
to their inner correlation and flexibility. Unfortunately,since ODE lies its main attention
on speed and not on accuracy, it was impossible to derive quantitative results.

Vocabulary Co F lx Learning BDI Robust-
Progress ness

O V R O V R O V R
1 1 4 6 3 1 5 4 4 4 5 5
2 2 4 2 2 2 2 2 2 2 2 2
3 5 4 5 4 4 6 6 6 6 4 4
4 3 1 4 5 5 3 5 3 6 6 6
5 4 2 1 1 3 1 1 1 1 1 1
6 6 3 3 6 6 4 3 5 3 3 3

Table 8.1.: Final ranking of vocabularies in respect of morphology and property
A value of 1 signifies the best, 6 the worst result in the respective category (ex-
ceptions areCo andF lx which are ordered numerically without valuation of
quality). The overall ranking depends on how important a researcher considers
the respective property.

The ranking of the vocabularies 2 and 5 is almost constant, irrespective of property and
morphology. The overall ranking depends on how important a researcher considers the
respective property.

Since those vocabularies that sick out, whether in good or not, are mainly the same, there
seems to lie a hidden system behind our results. This qualitative conclusion encourages
us to follow up our matter.

Our framework is just a small step on our way to understand whynature favours certain
principles, how most advantageous motor primitives can be derived and to what extent
they depend on the particular morphology. Such insights would put researchers in the
position to design best possible robots with a maximum of usability.

Yet, being unable to derive clear quantitative rules at thispoint in time, a fundament
for systematic investigations of many different morphologies was established in order to
build a framework of benchmarks. In doing so, those landmarks of exemplary morpholo-
gies serve to predict the performance of unexplored robots,of new robots, if they share
one or more of the morphological characteristics with one ofthe basis points which means
an agent that was examined earlier. This kind of parameter directory follows the example
of Bongard and Pfeifer’s framework for evolved behaviours in section 2.3. Merging both
methodologies would definitely enrich the basis for potential design principles.

In the last section, we will elaborate several assignments for our ongoing studies.
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8.2. Outlook
This project bears much more potential than can be investigated in the timeframe of
this thesis. Some of the ideas that directly hook up on the current framework and/or
an MiniDog6M will be presented.

8.2.1. Future trends for MiniDog6M
Having a closer at the irregular motion patterns in Figure 2.11 on page 20, the robot seems
to tumble, but instead of falling down, it recovers and carries on it way. Similar patterns
can also be found other walking machines with cyclic movement. Whereas fully con-
trolled motions only reveal this type of pattern when for instance the robot snags its foot
on a little stone or steps into a hole, we find that this irregularity is symptomatic for the
springy locomotion of the “running dog project”. Since the just mentioned recovering
qualities from minor disturbances are an inherent propertyof oscillation, similar effects
of self-stabilisation come forward in MiniDog6M’s simple sinusoidal control. However,
this theory has to be proven in a subsequent project.

Another objective for MiniDog6M is to advance gait control and hopping height respec-
tively width by adequate support of the spine. In addition, learning of speed variation con-
trol on different surfaces by means of amplitude, frequency, phase difference and maybe
offset variation should be put forward.

Moreover, further sensors such as pressure sensors, whiskers [Fend 04b, Fend 04a] etc
could be integrated in a subsequent project. Extending MiniDog6M’s sensory system
will help to better attitude recognition. Talking about theemergence of behaviours, one
framework supporting this very principle is Distributive Adaptive Control (DAC). DAC
is also called embedded artificial neural network, since it is not trained in isolation, but
learns through physical interaction with the environment.Hence behaviours can emerge
in the course of proper physical design. This is possible only because of correlation be-
tween various sensory channels. Being know as the so called “redundancy principle”,
this overlap in the information channels of the agent must beprovided by different sen-
sor modalities. Thinking of behavioural diversity, additional sensor data could be used
as a basis to choose between the different behaviours. Another option here is that the
quadruped learns how to use the twist motor and/or a catlike tail to counteract falling.

In section 2.4.3, a mainly reactive, behaviour based architecture with few planning com-
ponents for BISAM was recapitulated. This model consists ofa network of different
competences, each of which generates motor output as soon asits specific goal is not
met. These concurrent behaviours are merged in either by superposition or by special
knots. This architecture is most compatible with our idea ofintermixing motor primi-
tives. Moreover, it also complies with the principle of parallel, loosely coupled processes
[Pfeifer 03b, Pfeifer 99]. “Loosely coupled refer to coupling through the interaction with
the environment and in that sense is used as opposite of the strong coupling in a hierarchi-
cal architecture. Such an architecture also encourages theemergence of new behaviours.
We keep this architecture in mind for a later stage of our project, when MiniDog6M has
to cope a larger variety of tasks.
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8.2.2. Conceptual research extending our framework

In order to derive more general design principles for meaningful motor primitives, it is
necessary to examine more variations. Therefore, we will investigate not only more vo-
cabularies, but also further morphological changes such aslength or rest position of the
legs, changing shape and weight of head and rear etc. It wouldbe nice to investigate the
feasibility of the gathered behaviours on uneven or elasticsurface. Moreover, the experi-
ments must be extended to many different platforms, e.g. biped and hexapod.

As a reaction to significant environmental changes and new challeges, the robot, even if its
behaviours are extremely robust, should be able to slightlychange the frequencies in order
to adapt to the new situation. Needless to say that, for efficient adaptation, robust motor
primitives with least possible requirement of adaptation should be preferred. In order
to enable adaptation, we can either allow the controller to slightly change the respective
frequencies or we can provide our robot with a set of different frequencies which can be
exchanged with the original frequency is necessary.

Anyway, it is still important for an autonomous agent to be equipped with online learning.
Be it for administrative levels in a hierarchical architecture, that learns how to chose from
a batch of available solutions or to acquire solutions for new tasks. Unfortunately a con-
stant learning rate hits one of the weak points of Q-Learning. Due to a constant learning
rate unequal zero there will always be sub-optimal decisions. Since the agent does not
always act according to the learned policy, it is possible that the policy will be unlearned.
So, for future projects, instead of our ordinary Q-learning, we suggest to improve the al-
gorithm according to “risk-free reinforcement learning” proposed by Matthias Heger and
Karsten Berns [Heger 92]. The enhancements range from elimination of parameters, over
insensibility towards quantification errors, provision for state loops and constancy prob-
lems in state recognition to improvements concerning stochastic behaviour.

However, the evasion of the symbol-grounding problem stillremains an open duty in our
project. An important assignment herein is to examine the competence introduced by
sensory-motor-coordination through analysis of sensor patterns resulting from the differ-
ent vocabularies. For this purpose, a platform with many different sensor modalities is
needed. Furthermore, we would like to see if supplementary sensors influence the perfor-
mance of our learning progress.

Following potential guidlines for motor primitive, a good vocabulary could be self-acqui-
red by a robot with a morphology that was optimised beforehand. The designer would
just have to provide the agent with the desired weights for the different qualities e.g. high
BDI required, slow learning can be tolerated. One approach could be the stepwise re-
finement of motor primitives. Bernstein [Rosenbaum 96] found that in order to solve the
degree-of-freedom-problem, humans often freeze some of the joints and thereby reduce
their active degrees of freedom. Those joints are freed up with practice and thus serve to
optimise the learn behaviour. This idea can easily be transferred to our concepts by sys-
tematically restricting joints to mid position, for instance running, as it is here, can later
be improved by support from the spinal motors.



8.2. Outlook 107

After all, it would be very interesting to compare the learning progress of our approach
with that of other learning methods, such as actor critic, Hebb learning etc and thereby
introduce an additional dimension into our framework. A researcher would then be in the
position to choose the most suitable learning algorithm andsetting for his or her particular
robot.

The ultimate goal of this project would be the self-acquisition of the (here predefined)
motor primitives, while building up a body image of its own. One way of acquiring a
body image is by learning a model for the state transitions independency of the executed
action. This involves not only the standing up task, but alsothe control of running behav-
iour. The robot is then in the position, that it can substitute trial and error with planning
in advance. Otherwise, it would be much more interesting, ifa body image could (partly)
emerge and herein acquire the best fitting vocabulary.

Thinking it out, it would be possible to create a tool that, ifprovided with some parame-
ters, automatically computes a (near) optimal morphology and controller for given and
emerging tasks.
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A. Glossary

Action Period

Duration respectively execution time of the given action (here:NumTicks· ODE step size)

Behavioural diversity

If a task can be solved in more than one way.

Behavioural-Diversity-Index BDI

Product of diversity factor and average number of solutionsfor a given task

Cheap design

Parsimonious approach to designing robotic systems

Clusters of interest

Group of motors that serve the same purposes regarding theirposition and effective direc-
tion within the robot e.g. shoulder and hip motors for locomotion

Coherence-Index Co

Task an platform independent measure for the inner correlation and similarity to a special
root posture. Yields a numerical value between 0 and 1. (0 denotes a maximum unlike
posture. 1 means that all motors are controlled with the samefrequency and that the agent
ends up in root posture.)

Diversity factor D

Task and platform independent measure for the dissimilarity within a set of solution for
a given task. Yields numerical value between 0 and 1. (The more the solutions have in
common, the higher the value.)
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Don’t-Care

Special stop symbol that causes the motor to remain in its current postion. Don’t-Care
is used if a motor primitive does not consider one or more motors. These motors can
consequently have an arbitrary position since their position is determined by the last motor
primitive that directly set it.

Ecological balance

Equal complexity of a robot’s task, morphology and controller

Feature

In the RLT, the neurons of the hidden layer are called feature.

Form stable

Behaviours are form stable if they are tolerant against morphological changes.

Flexibility-Index Flx

Ratio of Don’t-Care terms within a motor primitive and totalamount of motors

Goal position

Motor angle after executing a motor primitve

Linear approximator

Mathematical method to approximate an unknown function by means of linear combina-
tion of a set of basis functions

Local receptive field

Speciality in a RBF-NN, the activation function (here: Gauss) is only unequal zero for a
small part of the input space. This region of limited size is called local receptive field and
is bounded by means of standard deviation. The mean lies in the centre of such a region.

Motor primitive

Low level motor program assigning a controller frequency for each motor

Morphology

Shape, sensor placement, actuators and materials of a robot

Morphological computation

Reduction of controller complexity by exploiting morphological properties such as shape,
material, sensor placement etc.

Open Dynamics Engine

Free, industrial strength C++ library for simulating articulated rigid body dynamics in a
physically realistic environment
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Position stable

Behaviour are position stable if they are valid for all initial positions

Q-Learning

Popular approach of reinforcement learning that tries to estimate the future discounted re-
ward if an agent chooses the unexplored or suboptimal actiona in state s and then resumes
the policyπ. The name is derived from this estimation function called Q-Function Q(s,
a).

Reinforment learning

Acquisition of a task fulfilling sensory-motor control strategy through trial and error. Dur-
ing the process of learning, the adaptive system undertakessome actions that affect its en-
vironment. Hereupon it is reinforced by receiving a scalar evaluation of its actions. This
reinforcement signal is generally known as “reward”. The reinforcement learning strategy
stresses outputs that maximise the received reward over time.

Reinforcement Learning Toolbox (RLT)

C++ based framework that provides a variety of reinforcement learning algorithms.

Radial Basis Function network

Fully connected three layer neural network with radial activation function (mostly the
Gauss function) in the inner layer

Robustness

Property of behaviours that are tolerant against changes inmorphology (form stable),
environment and posture (position stable)

Root posture

Basic posture of a robot. This can be natural rest position ora special designated posture,
e.g. starting posture. (Here: all motors in position 0 respectively frequency 0)

Step size

In ODE, each integration step advances the current time by a given step size.

Transfer capability

Ability to transform a given problem into another (basic) problem e.g standing up from
the left into standing up from the right hand side.

Vocabulary

Set of motor primitives
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B. Vocabularies in this thesis

B.1. Group A of vocabularies

Set1 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: 0 0 0 0 0 0
AC2: 0 −f 0 0 0 0
AC3: 0 f 0 0 0 0
AC4: 0 0 0 f 0 0
AC5: 0 0 0 −f 0 0
AC6: −f 0 −f 0 −f −f

AC7: f 0 f 0 f f

AC8: f 0 f 0 −f −f

AC9: −f 0 −f 0 f f

Set2 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: −f 0 −f f −f −f

AC2: −f −f 0 0 0 −f

AC3: 0 0 −f 0 −f 0
AC4: 0 0 0 f 0 0
AC5: f 0 f 0 0 0
AC6: −f 0 −f 0 −f −f

AC7: 0 0 0 0 0 0
AC8: f 0 f 0 −f −f

AC9: 0 f 0 0 0 0
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Set3 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: −f f −f −f −f −f

AC2: f f f f f f

AC3: f −f 0 f 0 0
AC4: f −f f 0 f −f

AC5: 0 0 0 −f 0 0
AC6: f 0 f f −f −f

AC7: −f 0 −f 0 −f −f

AC8: 0 f 0 f 0 0
AC9: f 0 f 0 −f −f

B.2. Group B of vocabularies

Set4 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: 0 0 0 0 0 0
AC2: x −f x x x x

AC3: x f x x x x

AC4: x x x f x x

AC5: x x x −f x x

AC6: −f 0 −f 0 −f −f

AC7: f 0 f 0 f f

AC8: f 0 f 0 −f −f

AC9: −f 0 −f 0 f f

Set5 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: −f 0 −f f −f −f

AC2: −f −f 0 0 0 −f

AC3: x x −f x −f x

AC4: x x x f x x

AC5: f 0 f 0 0 0
AC6: −f 0 −f 0 −f −f

AC7: 0 0 0 0 0 0
AC8: f 0 f 0 −f −f

AC9: 0 f x x 0 0
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Set6 FrontRight Bend HindRight Twist HindLeft FrontLeft
Run: fR 0 fR 0 fR fR

AC1: −f f −f −f −f −f

AC2: f f f f f f

AC3: f −f 0 f 0 0
AC4: f −f f 0 f −f

AC5: x x x −f x x

AC6: f 0 f f −f −f

AC7: −f 0 −f 0 −f −f

AC8: x f x f x x

AC9: f 0 f 0 −f −f
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C. Assortment of transfer capabilities
and fastest sequences to stand up

The data below represents the behavioural diversity and transfer capabilities of the simu-
lated MiniDog6M accommodated with vocabulary 4. Yet, the goal positions are assessed
directly which means without sinusoidal control function.

Back

1 8 4 0 --> basic position: 0
2 8 4 0 --> basic position: 0
3 2 5 0 --> basic position: 0
3 2 8 0 --> basic position: 0
3 5 3 0 --> basic position: 0
3 5 4 0 --> basic position: 0
3 8 3 0 --> basic position: 0
4 1 7 0 --> basic position: 0
4 2 5 0 --> basic position: 0
4 2 6 0 --> basic position: 0
4 2 7 0 --> basic position: 0
4 3 7 0 --> basic position: 0
4 5 4 0 --> basic position: 0
4 6 4 0 --> basic position: 0
4 6 3 0 --> basic position: 0
4 7 1 0 --> basic position: 0
4 7 4 0 --> basic position: 0
5 1 6 0 --> basic position: 0
7 3 1 0 --> basic position: 0
7 3 5 0 --> basic position: 0
7 4 2 0 --> basic position: 0
8 1 4 0 --> basic position: 0
8 3 4 0 --> basic position: 0
8 4 5 0 --> basic position: 0

3 0 --> basic position: 1
3 1 0 --> basic position: 1
3 2 0 --> basic position: 1
3 4 0 --> basic position: 1
3 5 0 --> basic position: 1
3 7 0 --> basic position: 1
3 8 0 --> basic position: 1
7 3 0 --> basic position: 1

4 0 --> basic position: 2
4 1 0 --> basic position: 2
4 2 0 --> basic position: 2
4 3 0 --> basic position: 2
4 5 0 --> basic position: 2
4 6 0 --> basic position: 2
4 7 0 --> basic position: 2
4 8 0 --> basic position: 2
7 4 0 --> basic position: 2
8 4 0 --> basic position: 2

5 1 0 --> basic position: 4
1 5 1 0 --> basic position: 4
2 5 1 0 --> basic position: 4
4 7 2 0 --> basic position: 4
5 1 2 0 --> basic position: 4
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5 1 3 0 --> basic position: 4
5 1 4 0 --> basic position: 4
5 1 5 0 --> basic position: 4
5 3 1 0 --> basic position: 4
5 4 1 0 --> basic position: 4

3 2 4 0 --> basic position: 5
3 7 4 0 --> basic position: 5
4 2 3 0 --> basic position: 5

Head

6 0 --> basic position: 0
7 0 --> basic position: 0
8 0 --> basic position: 0
2 6 0 --> basic position: 0
2 7 0 --> basic position: 0
2 8 0 --> basic position: 0
3 7 0 --> basic position: 0
3 8 0 --> basic position: 0
4 6 0 --> basic position: 0
6 1 0 --> basic position: 0
6 3 0 --> basic position: 0
6 4 0 --> basic position: 0
7 1 0 --> basic position: 0
7 4 0 --> basic position: 0
8 1 0 --> basic position: 0
8 3 0 --> basic position: 0

4 8 0 --> basic position: 1
8 2 0 --> basic position: 1
8 4 0 --> basic position: 1
1 7 3 0 --> basic position: 1
2 4 7 0 --> basic position: 1
2 8 4 0 --> basic position: 1
3 4 8 0 --> basic position: 1
4 1 8 0 --> basic position: 1
4 3 8 0 --> basic position: 1
4 8 1 0 --> basic position: 1
4 8 4 0 --> basic position: 1
8 1 2 0 --> basic position: 1
8 2 4 0 --> basic position: 1
8 2 5 0 --> basic position: 1
8 3 4 0 --> basic position: 1
8 4 1 0 --> basic position: 1
8 4 2 0 --> basic position: 1
8 4 5 0 --> basic position: 1
8 4 7 0 --> basic position: 1

7 3 0 --> basic position: 2
2 7 3 0 --> basic position: 2
3 7 3 0 --> basic position: 2
3 8 1 0 --> basic position: 2
3 8 2 0 --> basic position: 2
3 8 4 0 --> basic position: 2
6 2 3 0 --> basic position: 2
6 3 2 0 --> basic position: 2
7 1 3 0 --> basic position: 2
7 2 3 0 --> basic position: 2
7 2 5 0 --> basic position: 2
7 2 7 0 --> basic position: 2
7 3 1 0 --> basic position: 2
7 3 2 0 --> basic position: 2
7 3 5 0 --> basic position: 2
7 3 8 0 --> basic position: 2
7 4 3 0 --> basic position: 2
7 4 7 0 --> basic position: 2
8 1 4 0 --> basic position: 2

1 6 0 --> basic position: 3
1 7 0 --> basic position: 3
1 8 0 --> basic position: 3
4 7 0 --> basic position: 3

2 4 1 0 --> basic position: 5
7 4 8 0 --> basic position: 5

Right

1 7 0 --> basic position: 0
2 7 0 --> basic position: 0
3 7 0 --> basic position: 0
4 7 0 --> basic position: 0
5 4 0 --> basic position: 0
6 3 0 --> basic position: 0
6 4 0 --> basic position: 0
7 1 0 --> basic position: 0
7 4 0 --> basic position: 0

8 3 2 0 --> basic position: 1
8 2 3 0 --> basic position: 1
7 4 8 0 --> basic position: 1

2 4 0 --> basic position: 3
1 2 4 0 --> basic position: 3
2 4 2 0 --> basic position: 3
2 4 3 0 --> basic position: 3
2 4 6 0 --> basic position: 3
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2 4 7 0 --> basic position: 3
2 8 3 0 --> basic position: 3
3 8 3 0 --> basic position: 3
6 1 4 0 --> basic position: 3
8 2 4 0 --> basic position: 3
8 3 5 0 --> basic position: 3
8 3 6 0 --> basic position: 3
8 3 1 0 --> basic position: 3
8 3 7 0 --> basic position: 3
8 4 6 0 --> basic position: 3

7 2 0 --> basic position: 4
1 7 2 0 --> basic position: 4
2 7 2 0 --> basic position: 4
3 2 4 0 --> basic position: 4
3 6 2 0 --> basic position: 4
3 7 2 0 --> basic position: 4
4 2 6 0 --> basic position: 4
4 7 2 0 --> basic position: 4
5 3 1 0 --> basic position: 4
6 4 2 0 --> basic position: 4
7 1 2 0 --> basic position: 4

4 2 3 0 --> basic position: 5
5 2 3 0 --> basic position: 5
5 4 2 0 --> basic position: 5

Left

5 3 0 --> basic position: 0
8 3 0 --> basic position: 0
5 4 0 --> basic position: 0
2 8 0 --> basic position: 0

7 4 0 --> basic position: 2
1 7 4 0 --> basic position: 2
2 7 4 0 --> basic position: 2
4 7 4 0 --> basic position: 2
6 4 2 0 --> basic position: 2
7 2 4 0 --> basic position: 2
7 3 4 0 --> basic position: 2
7 2 8 0 --> basic position: 2
7 4 5 0 --> basic position: 2
7 4 8 0 --> basic position: 2

2 3 0 --> basic position: 3
6 3 0 --> basic position: 3
6 4 0 --> basic position: 3

2 8 2 0 --> basic position: 4
4 2 3 0 --> basic position: 4
4 8 2 0 --> basic position: 4

3 2 4 0 --> basic position: 5
3 7 4 0 --> basic position: 5
5 2 4 0 --> basic position: 5
5 4 2 0 --> basic position: 5
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D. Training patterns for supervised
learning

The data below represents the learning base for supervised learning which is derived from
the soultions for vocabulary 4 which are presented in Appendix C. Yet, the goal positions
are assessed directly which means without sinusoidal control function.

0 o o o o o o -RUN
0 o o o L o o -7
0 H o H o L L -0
0 H o H L H H -0
0 H o H L L L -0
0 H L H o L L -0
0 L o L H H H -0
0 L o L o L L -0
0 H o H H L L -0
0 L L L o H H -0
0 o o o o H H -0
0 o o o H o o -8
0 H o H o H H -1
0 H L H o H H -0

1 o o o o o o -8
1 o L o o o o -5
1 L o L o L L -3
1 L o L o H H -2
1 o H o o o o -8
1 o H o H o o -5
1 o o o H o o -5
1 o o o L o o -5
1 H o H o L L -3
1 H H H o L L -5
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1 H H H H L L -0
1 L H L o H H -1
1 L o L L H H -3
1 L o L L L L -0

2 o o o o o o -7
2 o L o o o o -7
2 o H o o o o -7
2 H o H o L L -0
2 L o L o L L -4
2 H o H o H H -3
2 H o H H H H -0
2 L o L H L L -0

3 x o x o x x -4

4 o o o o o o -6
4 o H o o o o -8

5 x o o o o x -5
5 x x L x L x -0
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